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There is an increasing interest in synthetically generated data (SGD). Reasons for this R
include earlier decision making, oversight of analyses undertaken, predicting future "\\\\\

trends, augmenting small sample sizes in rare diseases and avoiding sharing of SYNTHETIC DATA GENERATION

company data assets while complying with data privacy regulations. Moreover,

guidelines from the joint clinical assessment (JCA) may require use of complete UNLOCKING THE POWER OF SYNTHETIC DATA

patient level data availability for indirect treatment comparisons (ITCs) for the Health
USING Al

Technology Assessment (HTA) process. ECLIPTICA® is a powerful Artificial Intelligence
(Al) agent that generates SGD simply, using state of the art Al techniques. :
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1ckground & Introduction

ECLIPTICA® employs multiple data synthesis models: Conditional Tabular Generative
Adversarial Network (CTGAN), a Gaussian Copula (GCP), a Copula GAN synthesizer

(CGS) and Tabular Variational Autoencoder (TVAE) and Sequential Decision Trees (SDT)"®.
For the GANs, a dual-network adversarial architecture comprising a generator and a
discriminator was used.

The performance of these methods were evaluated using three case studies (datasets):
(i) vital Signs data at a single timepoint (N=500); (ii) Data from Non-Small Cell Lung
Cancer (NSCLC) patients in a randomized phase Il trial (N=670)%; (iii) longitudinal
EQ-5D-5L utility data from a randomized controlled trial (RCT) in ophthalmology (N=125).

Case Study 2: Ao
Case Study1: — synthedl
ol S NSCLC RCT Data
Vita Slgns Data The observed Hazard Ratio (HR) with the original data (N=670) was HR=1.048; 95% 3
. o Cl:0.899,1.221; p=0.5519. The HR from the CGS synthesized data was: HR=1.046; 95% inate
Tabl.e I Re.SUIts from Synfhetlca"y Generated Cl1:0.888,1.232; p=0.5924, showing an excellent fit (Figure1). "

Vital Signs dataset using CTGAN model Handling .
Variable Original Data (N=500) Synthetic Data (N=500) Similarly, when a synthesis was made on an interim data cut (N=335), the observed Pl nioimsceii
Age (Years) interim HR=1.149; 95% CI1.0.925,1.427;p=0.208. The SGD using GCP was: HR=1.094; 95% Early Decision

n 500 500 Cl:0.879,1.362; p=0.418. Mallg
mzz;(nsm 44-2328-22) 45-711é7-86) A Bayesian Model averaged estimate of the HR at the interim was 1.15 ; 95% Cl: 0.926,
Min, Max 29.00, 60.00 29.00, 60.00 1.444; p=0.401. In all models, the 95% CI| from the synthetic data included the treatment
Sex, n(%) effect based on the actual data.
Female 301 (60.2%) 271 (54.2%) . . . . .
Male 199 (39.8%) 229 (45.6%) Figure 1: Synthetically generated Hazard Ratio (HR) from the TOPICAL RCT using CGS Model
Weight (lb)
n 499 489 Product-Limit Survival Estimates Product-Limit Survival Estimates
Mean (SD) 152.08 (27.80) 150.98 (24.77) 1.0 + Censored 1.0 + Censored
Median 148 150 )
Min, Max 91.00, 247.00 98.00, 247.00 Original Data (N=670): Synthetic Data (N=670):
Diastolic BP (mmHG) 0.8 0.8 - . . . =
SRR - — HR=1.048; 95% CI: 0.899,1.221; p=0.5519 HR=1.046; 95% CI:0.888,1.232; p=0.5924
Mean (SD) 84.39 (12.93) 87.05 (13.0) _ _
Median 82 86 % 06 . % 06 o
Min, Max 58.00, 150.00 58.00, 150.00 3 Median (months): 3.57 vs 3.72 3 Median (months): 3.88 vs 4.08
Systolic BP (mmHG) = A=-0.15 months (5 days) = =-0.2 months (6 days)
n 500 500 z 04 2 04
Mean (SD) 138.72 (23.45) 138.68 (28.13) @ @
Median 134 131.5
Min, Max 98.00, 272.00 98.00, 272.00 . .
Abbreviations: BP: Blood Pressure; mmHG: millimeters of mercury; Min: Minimum; | |
Max: Maximum; SD: Standard Deviation.
0.0 = ' — 0.0
When tested on the vital signs dataset, the CTGAN model was able 0 20 40 60 0 20 40 60
to generate synthetic data closely aligned with the original data, 0s 0s
as demonstrated by the summary statistics shown in Table 1. treatment P T treatment P T

*Model Average HR across all SDG Models: 1.013 ; 95% CI: 0.871, 1.181; p=0.710

Case Study 3:
Opthalmology RCT Data
Figure 2: Synthetically generated Longitudinal Data using CGS model
(EQ-5D-5L Utilities) e ECLIPTICA® generated high quality synthetic data from three different datasets in
0.860 different disease settings. This was true for the full data set as well as for interim data

cuts.
e ECLIPTICA® can be used to generate synthetic data from real world databases
allowing consumers d mechanism for quality control and checks of vendor analyses.
e ECLIPTICA® can be used to predict future trends from the interim data allowing for
S earlier decision making and minimizing the risks of investment decisions for clinical
trial, real world data and health technology (HTA) decision making.
e With ECLIPTICA®, sponsors need not give out their data assets to 3rd parties unless
there is value in doing so — synthetic data can be shared instead.
Baseline Month 12 Month 24 e The new JCA requirement from EMA mandates the use of RWD for indirect treatment
==@== Originial Data (Trt Group) ==@= Originial Data (Control Group) ===@ -Synthetic Data(TrtGroup) =@ -Synthetic Data(ControlGroup) o . o o o
comparisons (ITCs) where possible. This may require sponsors to share their data
Note: EQ-5D-5L utilities estimated using the UK Alava Value set assets to 3rd OrtieS SPONSOrs Mav not CI|WC| s WISh to Sh(]re
When tested on longitudinal data (Figure 2), the CGS model produced EQ-5D-5L P - P Y 4

utility values aligned with the original data at baseline and months 12 and 24 for highly sensitive data with 3rd parties. ECLIPTICA® offers a solution.
both the treatment and control groups.
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