

Cost-effectiveness of targeted-release form (TRF)-budesonide for the treatment of adult population with immunoglobulin A nephropathy (IgAN) in Greece

EE694 K. Vellopoulou¹, S. Ravanidis¹, K. Kipentzoglou², Y. Sotirakou³, O. Zhuro³, J. Vöhringer³, P. Koukouliomatis⁴, V. Liakopoulos⁵, S. Marinaki⁶, M. Stangou⁷, G. Kourlaba⁸

¹ ECONCARE LP, Athens, Greece

² Britannia Pharmaceuticals LTD, STADA Group, Berkshire, UK

³ STADA Arzneimittel AG, Bad Vilbel, Germany

⁴ FARAN SA, Kifissia, Greece

⁵ Second Department of Nephrology, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece

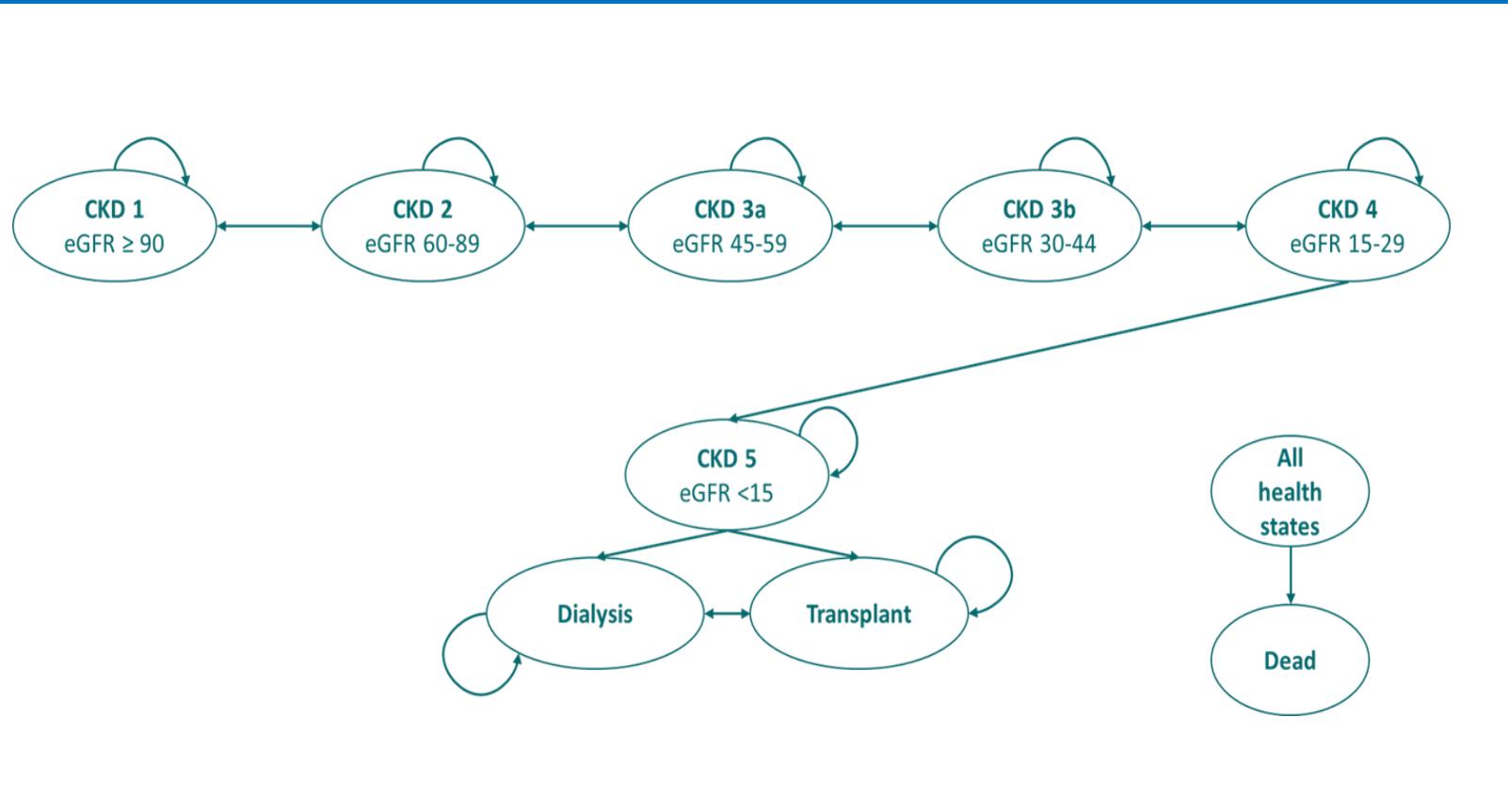
⁶ Clinic of Nephrology and Renal Transplantation, "Laiko" General Hospital, National & Kapodistrian University of Athens, Athens, Greece

⁷ Department of Nephrology Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki

⁸ Department of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece

Introduction

- Immunoglobulin A nephropathy (IgAN) is a kidney disease that leads to end-stage renal disease (ESRD) in almost half of all patients within 20 years of diagnosis (1). ESRD is the result of inflammation triggered by the accumulation of IgA protein deposits (2).
- Real-world evidence from a national registry of rare kidney diseases (UK RaDaR) indicates that higher levels of proteinuria are associated with worse 10-year kidney survival (3).
- Current management of primary IgAN in patients at risk of developing kidney failure typically comprises of blood pressure management to reduce stress on the kidneys (4). As the disease progresses to ESRD, kidney dialysis and kidney transplantation may be needed (4).
- The use of corticosteroids may lead to adverse events (AEs) and their administration is recommended only for IgAN patients at risk of rapid progression to ESRD and for limited duration (5). Moreover, the addition of immunosuppressive therapy to intensive supportive care does not improve outcomes substantially while it is accompanied with increased frequency of AEs (6).
- The targeted-release formulation of budesonide (TRF-budesonide) is a novel, oral formulation of the glucocorticoid budesonide, licensed in Europe for patients with primary IgAN who have at least 1 g of protein in their urine per day or a urine protein-to-creatinine ratio (UPCR) of at least 0.8 g/ (7) The TRF-budesonide is designed to target a primary site of IgAN, in the mucosal layer of the intestine.


Objective

- This study aims to assess the cost-utility of TRF-budesonide in patients with primary IgAN at risk of rapid disease progression with UPCR ≥ 0.8 g/g compared to standard of care (SoC) in Greece.

Methods

- A global cost-effectiveness cohort-level was adapted to compare TRF-budesonide with SoC from the perspective of the Greek public payer (EOPYY), over a lifetime, with monthly cycles and applying 3.5% discount rate on cost and health outcomes.
 - The model's health states were mostly defined by chronic kidney disease (CKD) stage, defined by estimated Glomerular Filtration rate (eGFR) levels (Figure 1).
 - Health outcomes are captured by each health state representing a category of complications that occur in IgAN.
 - Within each health state there is a series of possible events, whereby the distribution of these events contributes to the costs associated with the respective health state.
- TRF-budesonide is assumed to be provided to patients as a 120-tablet (30-day) pack and to be used alongside current SoC.
- SoC consists of angiotensin converting enzyme inhibitors (ACEis), angiotensin receptor blockers (ARBs) and sodium-glucose cotransporter 2 inhibitor (SGLT2i), according to Greek clinical experts;
- A structured resource use questionnaire was developed to validate global data where necessary and to assess local inputs from three Greek clinical experts on nephrology.
- Health outcomes were expressed in quality-adjusted-life-years (QALYs), whereas costs were expressed in euros, 2024 values (€, 2024)
- Cost parameters included: drug acquisition cost, health state costs, management of AEs and end-of-life cost.
- The base-case cost utility analysis, the incremental costs and incremental QALYs were assessed to calculate the incremental cost-effectiveness ratio (ICER).
- Scenario analyses with different time horizons, discount rates, sources from utilities, dose reduction and assumptions were explored.
- In order to account for first-order uncertainty around the data used for input parameter values, a one-way deterministic sensitivity analysis (DSA) was performed. The parameters varied by 20% to derive the upper and lower values. A tornado graph was generated (Figure 2).
- Probabilistic sensitivity analysis (PSA) was performed to explore uncertainty in the results with 1,000 iterations and the cost-effectiveness plane & cost-effectiveness acceptability curve were generated (Figure 3, Figure 4).

Figure 1. Model structure

Note: The arrows represent the permitted transitions between health states. eGFR measured as 35mL/min/1.73m²

Table 1. Baseline patient characteristics

Parameter	Mean	Source
Age	42.7 years (SD=10.76)	
Proportion female	34.1%	Nefligrard Part B data (8)
Average weight	84.5 kg (SD=18.99)	
Model baseline distribution across CKD states		
CKD stage 1	2.6%	
CKD stage 2	34.2%	
CKD stage 3a	39.5%	Nefligrard Part A data (9)
CKD stage 3b	23.7%	
CKD 4	0.0%	
Total	100%	

Model Inputs

- Patient characteristics** In line with the marketing authorization of European Medicines Agency (EMA) (7), the patient population for the economic analysis consists of adults (≥ 18 years old) with IgAN, who have at least 1 g of protein in their urine per day or a UPCR of at least 0.8 g/g. Patient characteristics used in the model were derived from the Nefligrard Nef-301 Part B study (8).
- Baseline patient distribution** across CKD stages was derived from Nefligrard Nef-301 Part A study (9) (Table 1). A scenario with data from Greek clinical experts was explored.
- Clinical inputs:** Data from Nefligrard Nef-301 was used to inform transition probabilities from baseline to 24 months (9).
 - eGFR values were mapped to CKD stages at baseline and after 24-months from receiving initial treatment. Patients are considered to have 'transitioned' if they were in a different CKD stage after 24 months of treatment compared with baseline, with the likelihood of transitioning evaluated by treatment arm and baseline CKD stage (Table 2).
 - Transition probabilities in TRF-budesonide arm in retreated patients follow the TRF-budesonide transition probabilities of the period 0-24 month (Table 2) adjusted for a 90% waning effect.
 - Transition probabilities in TRF-budesonide arm beyond the 24th month were assumed equivalent to the observed transition probabilities in the Nefligrard Nef-301 SoC arm (9).
- All treatment-related AEs** occurring in $\geq 4\%$ of patients in either treatment arm of the safety analysis set of the Nefligrard Nef-301 clinical study report (CSR) pooled dataset were included in the model (9). Treatment-emergent severe adverse events (TEAEs) were also included.
- HRQoL:** EQ-5D-5L data were sourced from literature (10, 11) to inform patient utility assumptions, since no HRQoL data were collected during the Nefligrard Nef-301 trial.
- AE disutilites** were obtained from a targeted literature review (12).
- Mortality:** Data from UK RaDaR were used to inform the risk of mortality for CKD stages 1-5, transplant, and dialysis (3). Life tables for Greece were used for background mortality, adjusted for age and sex (13).
- Cost inputs:** Healthcare resource use was informed by Greek clinical experts in nephrology. It was combined with unit costs to assess the annual health state costs (Table 4).
- The dosing schemes of TRF-budesonide and SoC were based on their Summary of Product Characteristics (SPCs).
- Treatment with TRF-budesonide lasts 9 month, followed by a reduced dose interval for 2 weeks period.
- One round of retreatment and a tapered dose period for another 2 weeks (see Table 4 for dosage scheme in each treatment as assumed in the analysis for the 65.7% of TRF-budesonide patients (aligned with Nefligrard trial & Greek clinical experts).
- The repetition of drug repartition of SoC: ACEis: 48%, ARBs: 52% and SGLT2i: 77%, based on clinical experts (Table 4).
- Drug acquisition costs were based on ex-factory prices accounting for all relevant legal discounts. Ex-factory prices were published in the drug price bulletins from the Ministry of health and positive reimbursement list (14,15,16).
- Reimbursement costs for medical exams were sourced from EOPYY website (17).
- The Greek catalogue of Diagnosis Related Group (Gr-DRG) was used to calculate any hospitalization costs in CKD stages (18).
- AE costs were derived from literature and were applied to the AE rates from Nefligrard trial (9).
- End-of-life (EoL) costs: EoL care is mostly managed at inpatient setting (clinical experts opinion). Its cost was estimated at €1,960.64 (DRG code used: L60C) (18).

Table 2. Transition probabilities in both treatment arms up to 24 months

From	To				
Treatment	CKD 1	CKD 2	CKD 3a	CKD 3b	CKD 4
TRF-budesonide transition probabilities					
CKD 1	95.09%	4.91%			
CKD 2	0.36%	98.32%	1.31%		
CKD 3a		0.37%	97.12%	2.51%	
CKD 3b			0.63%	97.77%	1.59%
CKD 4				0.63%	99.37%
SoC transition probabilities					
CKD 1	92.85%	7.15%			
CKD 2	0.20%	97.42%	2.39%		
CKD 3a		0.20%	95.65%	4.15%	
CKD 3b			0.35%	96.83%	2.82%
CKD 4				0.35%	99.65%
Transition probabilities: From CKD 5, Dialysis and Transplant (both in TRF-budesonide & SoC arm)					
	CKD 5	Dialysis	Transplant		
CKD 5	95.30%	4.50%	0.20%		
Dialysis	99.50%	0.50%			
Transplant	0.70%	99.30%			

Table 3. Base case utility values

Health state	Mean value (SE)	Reference
CKD 1	0.90 (0.04)	
CKD 2	0.90 (0.04)	
CKD 3a	0.87 (0.03)	(10)
CKD 3b	0.87 (0.03)	
CKD 4	0.85 (0.03)	
CKD 5	0.85 (0.05)	
Haemodialysis	0.44 (0.03)	
Peritoneal dialysis	0.53 (0.07)	(11)
Post transplant	0.71 (0.02)	

Note: Standard error calculation: $(1-\text{mean})/(1.96 \times 2)$

Table 4. Drug Treatment costs (€, 2024)

TRF-budesonide	Dose description	Dose per cycle*	Packs per cycle*	Treatment cost per cycle*
Treatment period				
	16mg OD for 9 months	487 mg	1.01	€ 5,721.61
Reduced dose period (in month 10)				
	8 mg OD for 2 weeks	112 mg	0.23	€ 1,315.85
Tapered dose period				
	4mg OD for 2 weeks	56 mg	0.12	€ 657.93
SOC	Weighting	Monthly cost	Weighted average cost	
ACEI	42%	€ 9.15	€ 7.63	
ARB	58%	€ 6.55		
SGLT2i	77%	€ 47.03	€ 36.05	
Weighted average cost of SoC				€ 43.69

Note: SoC drugs weights source: (Greek clinical experts); drug costs source: (14,15,16)

Results

- TRF-budesonide would result in €38,566 additional costs and 0.473 additional QALYs compared to SoC alone, resulting in an ICER of €81,537 per QALY gained.
- DSA revealed that the health state utilities are the parameters that highly would affect the basecase results.
- PSA confirms the robustness of the base case results and illustrates that at willingness-to-pay thresholds (WTP) $> €90,000$, which is an acceptable WTP for drugs designated as orphan (21) TRF-budesonide is most likely to be the cost-effective treatment option vs. SoC.

Table 6. base case results of TRF-budesonide vs SoC

Arm	Total Costs	QALYs	Incremental Costs	Incremental QALYs	ICER
TRF-budesonide	€ 327,129	16.089			
SoC	€ 288,563	15.616	€ 38,566	0.473	€ 81,537

Table 5. Medical resource use costs per cycle by health state

Health state	Total cost per cycle	Description/ Source

</tbl