



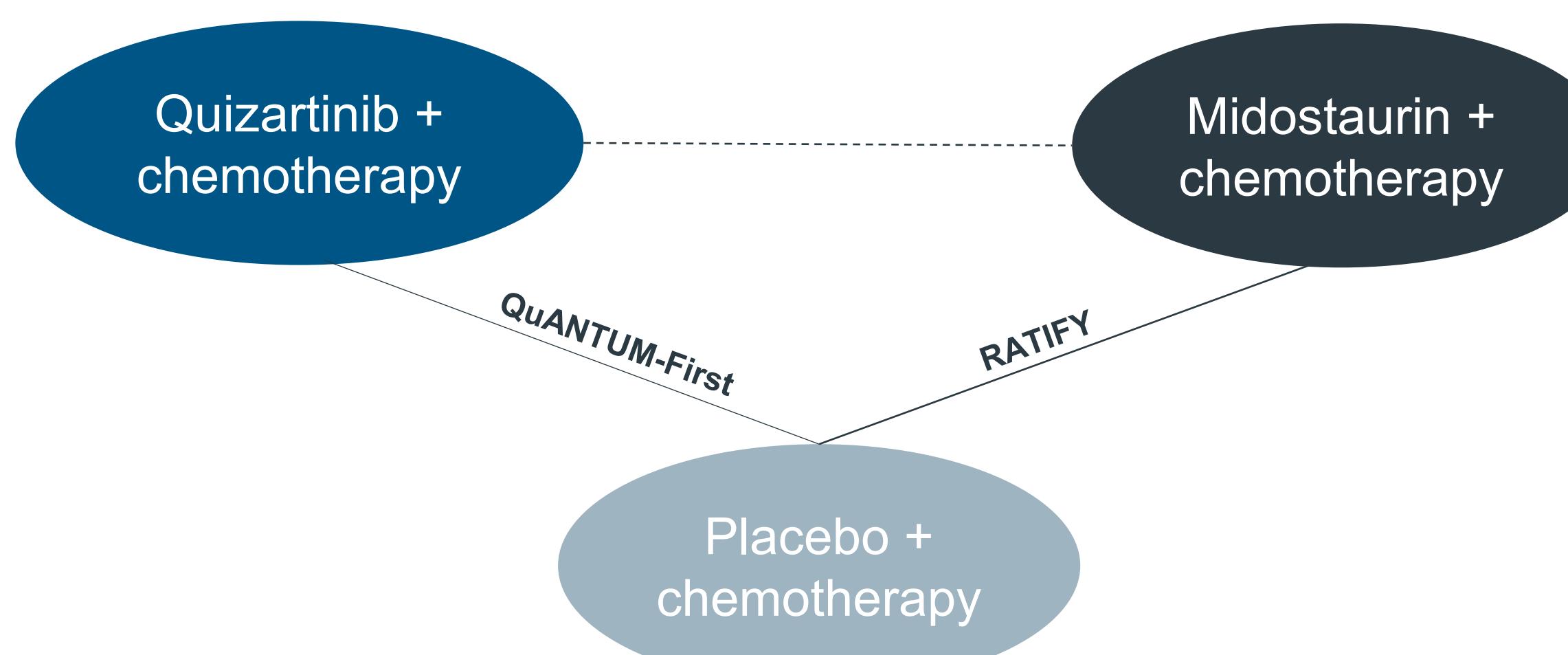
# Impact of indirect treatment comparison (ITC) methodology on cost-effectiveness of quizartinib in newly diagnosed FLT3-ITD+ acute myeloid leukemia (AML) in Canada and the United Kingdom (UK)

Yulia Privolnev<sup>1</sup>, Sudhir Unni<sup>2</sup>, Efthalia Nikogloou<sup>3</sup>, Farhan Mughal<sup>4</sup>, Chuyi Zhang<sup>5</sup>, Anna Maria Vanessa Gittfried<sup>6</sup>, Sergey Muratov<sup>7</sup>, Tara Bourgoin<sup>8</sup>, Arushi Sharma<sup>8</sup>

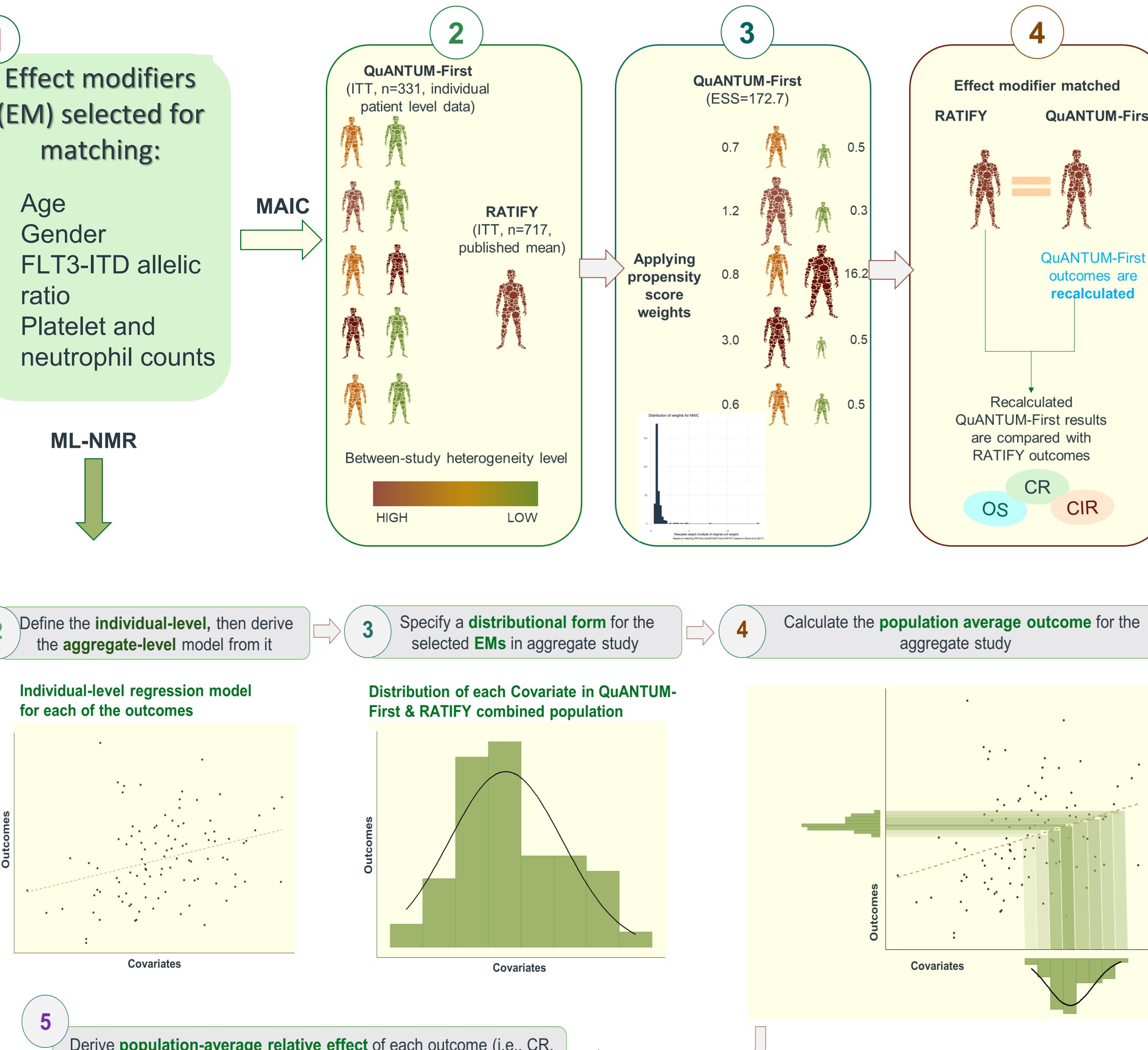
<sup>1</sup>Daiichi Sankyo, Toronto, Canada; <sup>2</sup>Daiichi Sankyo, Basking Ridge, USA; <sup>3</sup>Daiichi Sankyo, Munich, Germany; <sup>4</sup>Daiichi Sankyo, London, United Kingdom; <sup>5</sup>IQVIA, London, United Kingdom; <sup>6</sup>OPEN Health HEOR & Market Access, Rotterdam, the Netherlands; <sup>7</sup>IQVIA, Toronto, Canada; <sup>8</sup>IQVIA, Ottawa, Canada

## PURPOSE

- This study assessed the impact of using two ITC approaches on the cost-effectiveness of quizartinib regimen in adults with newly diagnosed FLT3-ITD+ AML compared with midostaurin regimen from the perspective of Canadian and UK public payers.


## BACKGROUND

- Health technology assessments (HTA) worldwide often require estimates of comparative effectiveness for all relevant treatments to inform reimbursement decisions. When direct evidence from head-to-head studies is not available, ITCs are often used to generate evidence<sup>1</sup>.
- Quizartinib** is an oral, highly potent, second-generation, selective type 2 FLT3 inhibitor<sup>2</sup>, **approved for reimbursement** in adults with newly diagnosed FLT3-ITD+ AML in Canada and the UK.
- This study compared the impact of using **two different ITC approaches** on results of a cost-effectiveness (CE) analysis conducted in **Canadian and UK settings**.


## METHODS

- A **semi-Markov model** was developed consisting of **11 health states**, incorporating first-line and second-line treatments, with a 28-day cycle length.
- Relative efficacy for key clinical parameters such as complete remission (CR), relapse after complete remission (CIR) and overall survival (OS) were informed by two approaches: an **anchored matching-adjusted indirect comparison (MAIC)** and an **ML-NMR** using data from QuANTUM-First (quizartinib)<sup>2</sup> and RATIFY (midostaurin)<sup>3</sup> trials.

Figure 1. Network of evidence



- Figures 2 and 3 below provide more details on **MAIC** and **ML-NMR**.



## CONCLUSION

- Quizartinib represents a cost-effective treatment for patients with newly diagnosed FLT3-ITD+ AML compared to the midostaurin regimen in both Canada and the UK. The use of different ITC methods (MAIC and ML-NMR) did not impact this conclusion.

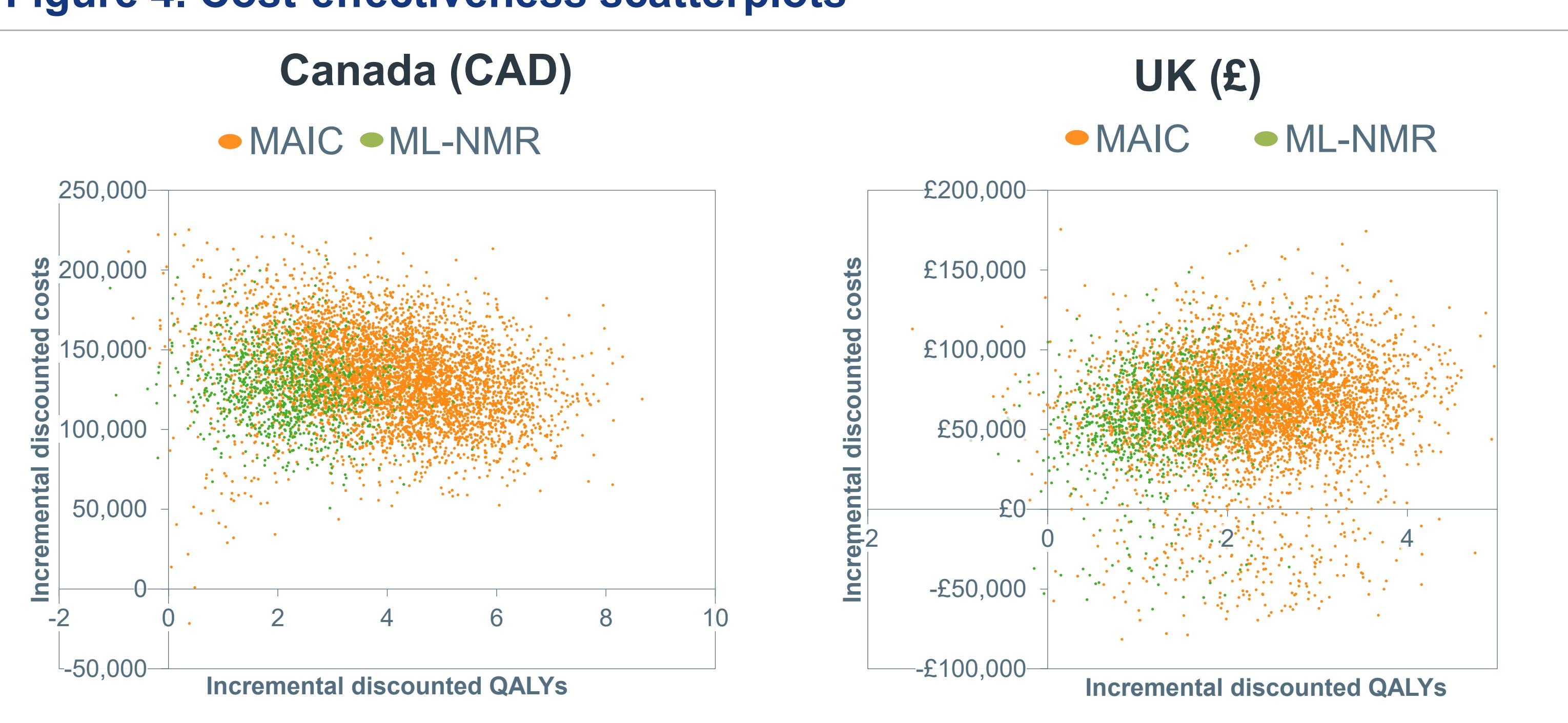
- Descriptions and sources of key model inputs are summarised in **Table 1**. Of note, the **main model driver** (CIR HR) was consistent across both approaches: hazard ratio (95% CI): **0.42** (0.20 to 0.91) in **MAIC** and **0.49** (0.23 to 0.997) in **ML-NMR**, supporting a treatment benefit for quizartinib regimen vs. midostaurin regimen, regardless of the ITC approach adopted.
- Key outcomes included total costs, total quality-adjusted life years (QALYs), and incremental cost-effectiveness ratio (ICER). The base case (deterministic) was from the Canadian and UK public payer perspective.

Table 1. Key model inputs

| Parameters                  | Description                                        | Source                                                  |
|-----------------------------|----------------------------------------------------|---------------------------------------------------------|
| Transition probabilities    | Transition matrix between health states            | IPD analyses of the QuANTUM-First; published literature |
| Comparative efficacy inputs | CIR HR, OS HR, CR OR                               | MAIC or ML-NMR analyses of midostaurin vs. quizartinib  |
| Safety inputs               | Grade $\geq 3$ AEs reported in $\geq 5\%$ patients | QuANTUM-First and RATIFY trials                         |
| Health utility inputs       | Health state utilities                             | Published literature                                    |
| Healthcare costs            | Drug acquisition, disease and AE management        | Canadian and UK databases, literature, expert opinion   |
| Discount rate               | Applied to both costs and outcomes                 | Canada: 1.5%; UK: 3.5%                                  |

## RESULTS

- Over a lifetime horizon, the gains in QALYs for quizartinib were **considerably higher** than for midostaurin and were **clinically meaningful** regardless of approach (**Table 2**).


Table 2. Base Case Deterministic Results (at list prices)

| Outcomes                       | Canada      | UK      |
|--------------------------------|-------------|---------|
| <b>Incremental total costs</b> |             |         |
| MAIC                           | CAD 138,234 | £65,328 |
| ML-NMR                         | CAD 127,715 | £56,676 |
| <b>Incremental total QALYs</b> |             |         |
| MAIC                           | 3.87        | 2.18    |
| ML-NMR                         | 2.20        | 1.24    |
| <b>ICER</b>                    |             |         |
| MAIC                           | CAD 35,729  | £30,015 |
| ML-NMR                         | CAD 58,179  | £45,732 |

ICER, Incremental cost-effectiveness ratio; MAIC, Matching-adjusted indirect comparison; ML-NMR, multilevel network meta-regression; QALY, Quality-adjusted life year;

- On the probabilistic sensitivity analysis, in comparison to the midostaurin regimen and using the list prices, most iterations were in the North-Eastern quadrant: 94.7% (MAIC) and 93.2% (ML-NMR) in the UK and ~100% for both types of ITC in Canada (**Figure 4**).
- When confidential net prices are applied, the introduction of quizartinib as a therapeutic option represents a **cost-effective use of public payer resources** in both Canada and UK.

Figure 4. Cost-effectiveness scatterplots



QALY, Quality-adjusted life year.

## REFERENCES

- CDA-AMC, Procedures for Reimbursement Reviews (2025), Available at [https://www.cda-amc.ca/sites/default/files/Drug\\_Review\\_Process/Drug\\_Reimbursement\\_Review\\_Procedures.pdf](https://www.cda-amc.ca/sites/default/files/Drug_Review_Process/Drug_Reimbursement_Review_Procedures.pdf)
- Erba, Harry P et al. Lancet (London, England) vol. 401,10388 (2023): 1571-1583. doi:10.1016/S0140-6736(23)00464-6
- Rücker, Frank G et al. Leukemia vol. 36,1 (2022): 90-99. doi:10.1038/s41375-021-01323-0

## ACKNOWLEDGEMENTS

We would like to thank the patients, their families, and caregivers for their participation in the QuANTUM-First study. This study is sponsored by Daiichi Sankyo, Inc.