

Economic Evaluations, Cost and Healthcare Resource Utilization in early Triple-Negative and Low Hormone Receptor-Positive Breast Cancer: A Comprehensive Systematic Review

Amin Haiderali¹; Jagadeswara Rao Earla¹; Asheer Dovari²; Jyothsna Nathani³; Sugandh Sharma⁴

¹Merck & Co., Inc., Rahway, NJ, USA;

²Parexel International, Mumbai,

India; ³Parexel International, Bengaluru,

India; ⁴Parexel International, Chandigarh,

India.

Background and objectives

- Triple-negative breast cancer (TNBC) which lacks expression of Hormone Receptor (HR) and Human Epidermal growth factor Receptor 2 (HER2), and breast cancer (BC) with HR- low positive (HR \leq 5% by immunohistochemistry) HER2- are aggressive subtypes with significant economic implications.
- This review synthesized evidence on economic evaluations, healthcare resource utilization (HCRU), and costs associated with adjuvant therapy in these populations.

Methodology

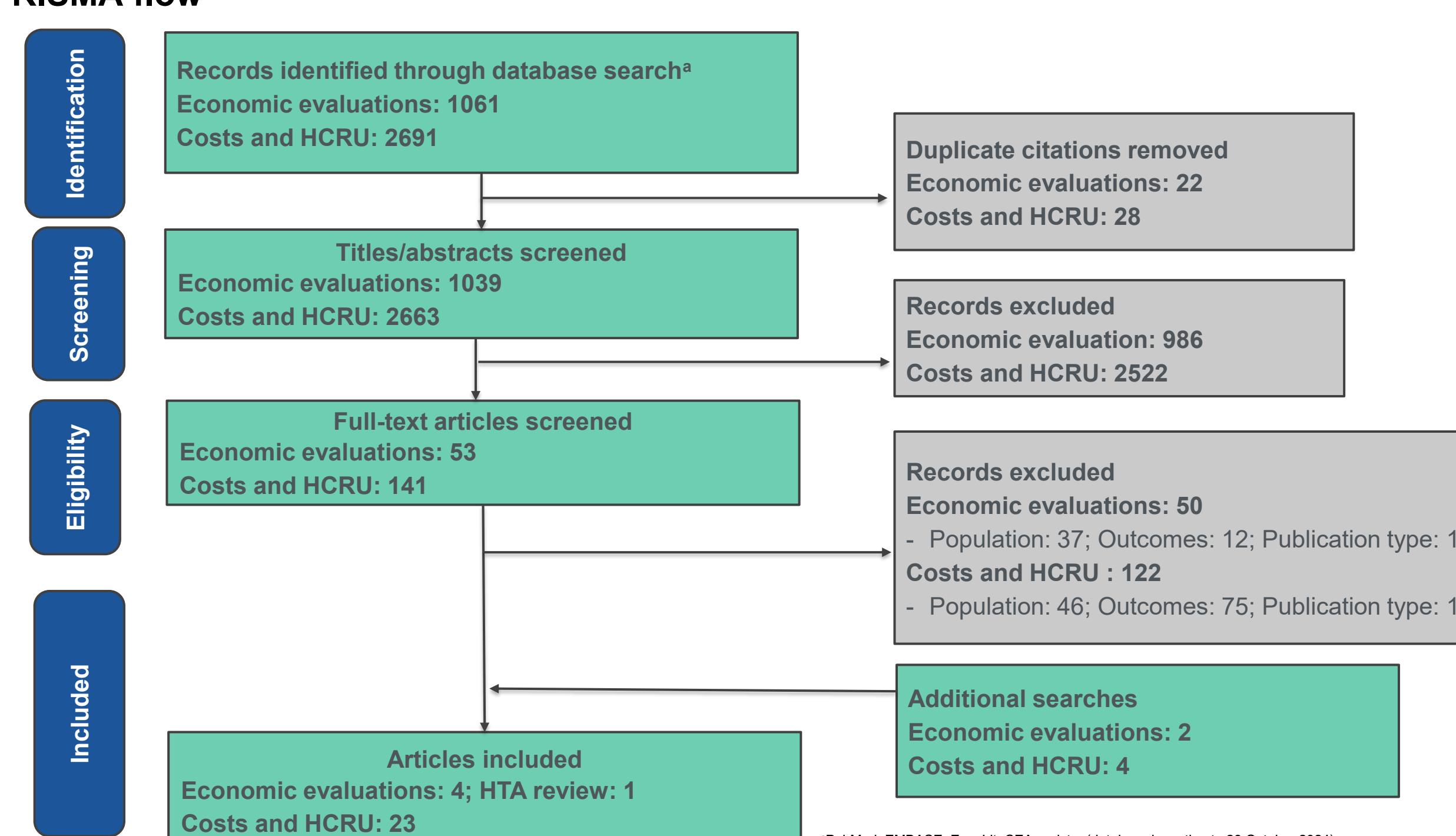

- The systematic literature review followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines with the eligibility criteria as provided in **Table 1**.
- Multiple databases (Embase, MEDLINE, Tufts CEA Registry, Econlit) were searched for English language studies from inception to October 2024. This was supplemented by conference proceedings (2021-2024) and bibliographic searching of relevant reviews.
- Two independent reviewers conducted screening, data extraction, and quality assessment, with a third reviewer resolving any discrepancies to ensure methodological rigor.

Table 1: Eligibility criteria (PICOS)

Parameters	Economic evaluations	Costs and HCRU
Population	Stage I-III TNBC or low HR-positive and/or HER2 borderline BC receiving adjuvant therapy; metastatic TNBC was excluded	Stage I-III TNBC or low HR-positive and/or HER2 borderline BC; metastatic TNBC was excluded
Intervention	Pembrolizumab, Paclitaxel, Gemcitabine, Docetaxel, Vinorelbine tartrate, Epirubicin, Eribulin, Olaparib, Ixabepilone, Methotrexate, Fluorouracil, Cyclophosphamide, Carboplatin, Talazoparib, Cisplatin, Doxorubicin, Capecitabine	No restriction
Outcomes	Cost-effectiveness outcomes such as ICER, cost per QALY etc.	HCRU outcomes: Direct, indirect costs
Study design	No restriction	
Language	Full texts published in the English language	
Geography and timeframe	Global; Database inception to 28 October 2024	

BC, Breast Cancer; HCRU, Healthcare Resource Utilization; HER2, Human Epidermal growth factor Receptor 2; HR, Hormone Receptor; ICER, Incremental Cost-Effectiveness Ratio; QALY, Quality-Adjusted Life Year; TNBC, Triple-Negative Breast Cancer

Figure 1: PRISMA flow

Economic evaluations in TNBC

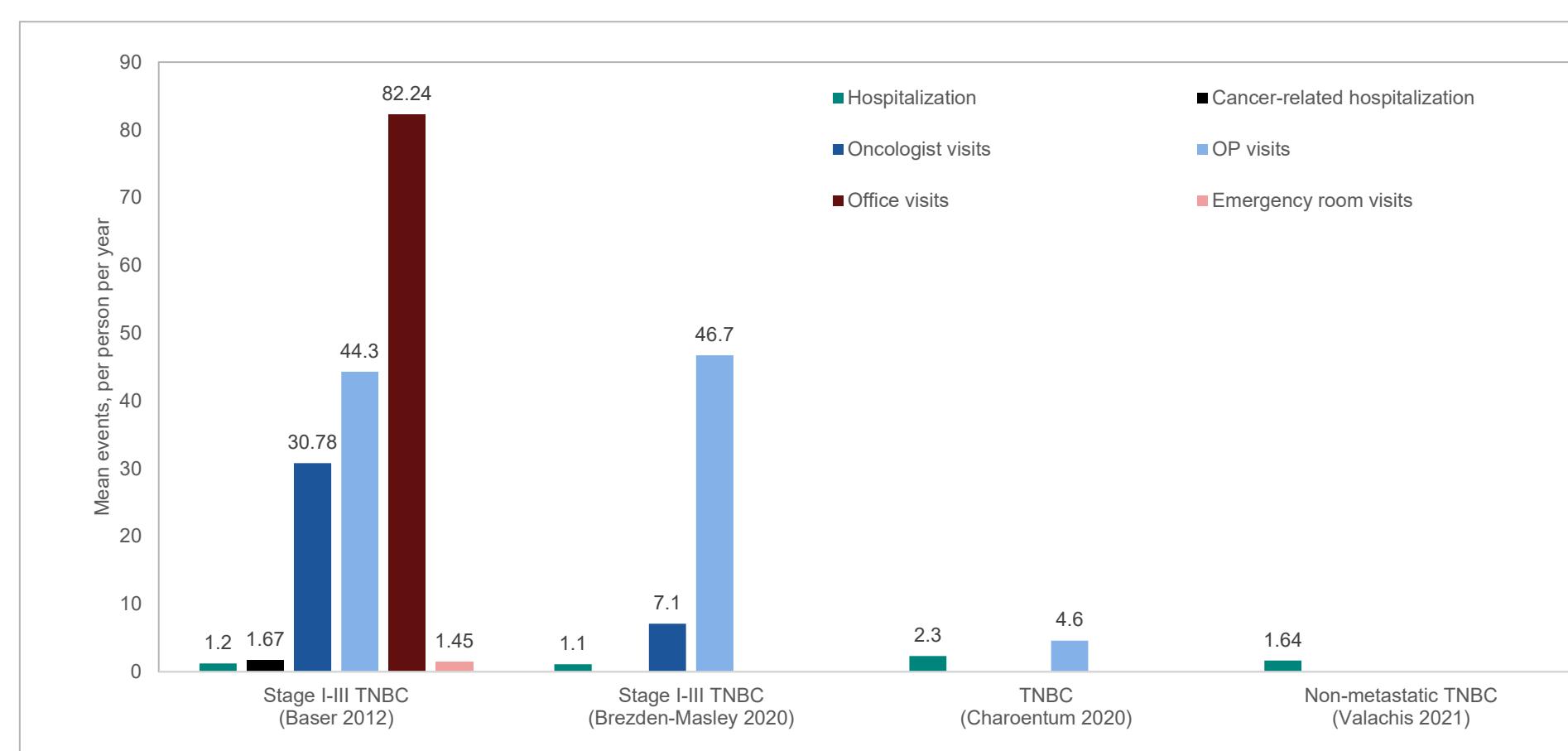
- Four economic evaluations and one health technology assessment (HTA) were identified.
- Adjuvant olaparib versus watch and wait was found to be cost-effective for germline BRCA mutation (gBRCA)1/2-mutated early BC in three studies.
- The study from the UK showed that adding bevacizumab to adjuvant chemotherapy could be cost-effective with an ICER \leq £43,804 per QALY.

Table 2: Summary of economic evaluations in TNBC

Study, Country (cost year)	Interventions	Incremental Cost	Incremental QALYs	ICER (per QALY)	Conclusion
Polyzoi 2021 ¹ , Sweden (2022)	Adjuvant olaparib vs WaW	465,928 SEK	1.25	371,522 SEK	Cost-effective at list price
Cedillo 2024 ² , Spain (2023)	Adjuvant olaparib vs WaW	€ 50,164	1.28	€ 39,084	Could be cost-effective
Sousa 2024 ³ , Portugal (NR)	Adjuvant olaparib vs WaW	€ 42,801	1.1	€ 38,917	Generally acceptable incremental cost
Ray 2009 ⁴ , UK (NR)	Adjuvant bevacizumab + chemo vs chemo alone	-	0.82	≤£43,804	Could be cost-effective
NICE TA886 2023 ⁵ , UK(2019-2020)	Adjuvant olaparib vs WaW	-	-	£29,732 (TNBC)	Cost-effective with Patient Access Scheme pricing

¹ICER, incremental cost-effectiveness ratio; NR, not reported; QALY, quality-adjusted life years; WaW, wait and watch

HCRU in TNBC


- Ten studies reported HCRU data including hospitalization rates, outpatient visits and length of hospital stays (LoS) with five studies from the USA.
- Mean number of emergency room (ER) visits ranged from 0.6-1.4 per person per year (PPPY)⁸ and 0.2-1.3 visits per person per month (PPPM) (USA, Canada and Brazil)^{8,9,10}
- Outpatient services were heavily utilized, with professional/office visits ranging from 47.1% to 100%^{6,11} of patients and OP visits ranging from 4.6-44.3 PPPY^{7,8}, with office visits reaching 82.2 PPPY in the USA⁸
- Supportive care procedures increased (20.05 to 53.37 PPPM, Brazil) from early to progressive disease states¹⁰
- Resource use peaked during active treatment phases, then significantly decreased during follow-up periods¹¹
- Average LoS ranged from 4.2-10.9 days PPPY (USA, Canada, Thailand)^{6,7,8} while cancer-related stays were 4.2 days⁸ (USA).

Disclosures (if required)

Amin Haiderali and Jagadeswara Rao Earla are employees of Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA and hold stock in Merck & Co., Inc., Rahway, NJ, USA.

- Hospitalization rates across four studies ranged from 1.1⁶ to 2.3⁷ PPPY.
- Cancer-related hospitalizations were reported in one study showing a higher rate (1.6 PPPY) than all-cause hospitalizations (1.2 PPPY)⁸

Figure 2: HCRU in TNBC (PPPY)

Table 3: Summary of HCRU in TNBC

Study, Country	Population	HCRU Component	Value
Sanno 2024 ¹² , Japan	Early TNBC	Hospitalizations	100% of patients (N=3925)
Sullivan 2024 ¹³ , USA	Elderly patients (>66 years) with early-stage TNBC receiving neoadjuvant chemotherapy and adjuvant capecitabine	ER visits/hospitalizations	Twenty-seven (28%) patients had ER/hospitalization during capecitabine treatment
Haiderali 2021 ¹¹ , USA	Early TNBC	Hospitalizations: Initial neoadjuvant treatment	0.26 PPPM
		Hospitalizations: Post-surgery period	0.08 PPPM
Schwartz 2018 ⁹ , USA	Stage III TNBC (intervening treatment period)	Hospitalizations	1.50 PPPM
		ER visits	1.30 PPPM
		Outpatient visits	23.80 PPPM
Sieluk 2022 ¹⁴ , USA	TNBC without recurrence	Cancer-related hospitalizations	0.005 events/person-month
		Outpatient visits; ER visits	0.400; 0.004 events/person-month
		Cancer-related hospitalizations	0.112 events/person-month
Carlos Souto 2023 ¹⁰ , Brazil	Early TNBC	Outpatient visits; ER visits	1.949; 0.033 events/person-month
		Hospitalizations	0.23 PPPM
		ER visits	0.25 PPPM
		Hospitalizations	0.48 PPPM
		ER visits	0.57 PPPM

Costs in TNBC

- Sixteen studies reported cost data including total costs, direct costs and indirect costs.
- Total costs ranged from €7,140 PPPY in Portugal (2019)¹⁹ to \$95,338 PPPY in the USA (2012)⁸
- Multiple US studies showed PPPM costs between \$4,810 in 2013⁹ to \$14,466 in 2018¹¹
- Costs increased with advancing stage - One New Zealand study reported median costs (2019-2020) of \$25,581 for Stage I vs \$34,628 for Stage III¹⁵
- Recurrence substantially increased costs: Non-recurrence (\$1,944 PPPM) vs. metastatic recurrence (\$13,013 PPPM)¹⁴ in the USA (2019).
- Outpatient costs is often the largest cost component, ranging from \$2,478 (Thailand)⁷ in 2018 to \$34,949 PPPY(USA)⁸ in 2012.
- Treatment-specific costs varied across studies for different components:
 - Chemotherapy: €398 (Portugal, 2012)¹⁶ to ₹170,000 per treatment (India, 2017-2020)¹⁷
 - Radiation: €2,649 (Portugal) - \$6,111 (Belgium) per treatment in 2012^{16,18}
 - Surgery: \$1,344 (Belgium) - €2,522 (Portugal) in 2012^{16,18}
- Indirect costs also varied by disease severity
 - Productivity losses: Ranged from \$451-\$1,454 PPPM (USA, 2019), increasing with disease severity¹⁴
 - Total indirect burden: In Portugal, indirect costs represented 44% of total economic burden (€22.2M of €50M total annual cost)¹⁹

Table 4: Total costs in TNBC

Study (Year), Country	Population	Total Cost	Currency, (Time Frame)
Baser 2012 ⁸ , USA	All TNBC (n=403)	95,338	USD, PPPY (NR)
	Cancer-related	69,376	USD, PPPY (NR)
Brandão 2020 ¹⁶ , Portugal	All TNBC (n=54)	11,224	Euros, Median (2012)
Brezen-Masley 2020 ⁶ , Canada	Stage I-III (n=3081)	35,064	CAD, PPPY (2017)
Carlos Souto Maior Borda 2023 ¹⁰ , Brazil	Early/locally advanced (n=1034)	7,352	USD, PPPM (2023)
Haiderali 2021 ¹¹ , USA	Early-stage NAT (n=236)	14,466	USD, PPPM (2018)
Lao 2022 ¹⁵ , New Zealand	All TNBC (n=996)	31,722	NZD, median (2019/2020)
Sieluk 2022 ¹⁴ , USA	Non-recurrence (n=1170)	1,944	USD, PPPM (2019)
	Locoregional (n=934)	5,116	USD, PPPM (2019)
Silva 2021 ¹⁹ , Portugal	All TNBC (n=7052)	50 million	Euro, per year (2019)
		7,140	Euro, PPPY (2019)

AT, Adjuvant therapy; CAD, Canadian Dollar; NAT, Neoadjuvant therapy; NZD, New Zealand Dollar; PPPM, Per Patient Per Month; PPPY, Per Patient Per Year

Conclusions

- This review highlights the significant economic burden with stage I-III TNBC, while evidence specific to HR-low positive HER2- BC was scarce.
- Economic evaluations primarily focused on adjuvant Olaparib for BRCA-mutated patients, with limited evidence for unmutated TNBC patients.
- Despite some adjuvant therapies demonstrating cost-effectiveness, high recurrence and progression costs emphasize the need for effective interventions to optimize outcomes and resource allocation.

References

- Polyzoi, M., et al. (2024). "Cost-Effectiveness Analysis of Adjuvant Olaparib Versus Watch and Wait in the Treatment of Germline BRCA 1/2-Mutated, High-Risk, HER2-Negative Early Breast Cancer in Sweden." *PharmacoEconomics-Open* 8(2): 277-289.
- Cedillo, S., et al. (2024). "Cost-Utility Analysis of Adjuvant Olaparib for Germline BRCA1/2-Mutated, High-Risk, Human Epidermal Factor-2-Negative Breast Cancer in Portugal." *2024-11, ISPOR Europe 2024*, Barcelona, Spain, Value in Health. 27: 4.
- Sousa, R., et al. (2024). "Cost-Effectiveness of Adjuvant Olaparib for Patients With Germline BRCA1/2-Mutated, High-Risk, Human Epidermal Factor-2-Negative Breast Cancer in Portugal." *2024-11, ISPOR Europe 2024*, Barcelona, Spain, Value in Health. 27: 4.
- Haiderali, A., et al. (2021). "Hospitalization and outpatient visits in early-stage TNBC: A population-based comparison of treatment patterns, resource utilization, and costs by cancer stage for Ontario patients with triple-negative breast cancer." *Cancer Medicine* 10(20): 7548-7557.
- Haiderali, A., et al. (2020). "Healthcare resource utilization and costs by cancer stage for Ontario patients with triple-negative breast cancer." *Cancer Medicine* 9(10): 3833-3841.
- Schwartz, K., et al. (2018). "Treatment patterns, healthcare resource utilization and outcomes for early-stage triple-negative breast cancer in the Brazilian private healthcare system: a database study." *Cancer* 124(10): 2104-2114.
- Carlos Souto Maior Borda, M. A., et al. (2023). "Treatment patterns, healthcare resource utilization and outcomes for early-stage triple-negative breast cancer in Japan." *Cancer* 130(13): 833-840.
- Sieluk