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INTRODUCTION

• Efficacy and safety of a new intervention in

patients with different tumor types that all have

the same mutation or biomarker are often

evaluated in basket trials shown in Figure 1

OBJECTIVES
• Borrowing information from other data sources to

improve the precision of estimates especially

with small sample size in specific baskets

• Maximizing the information available by allowing

the treatment effect in any basket to be informed

by the effects in all other incorporated baskets

• Reducing the probability of obtaining unreliable

estimates optimizing time to event extrapolations

especially for baskets with only a few patients

• Conducting posterior predictions for a

hypothetical unobserved tumor type for different

censoring scenarios to explore results at the

extremes

METHODS

CONCLUSIONS

REFERENCES
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• Allowing the borrowing of strength in the form of

information from the overall population into tumor-specific

baskets to help estimate the survival probabilities in a

dynamic way over time using simulated data

• Borrowing most in baskets with small sample size

• Conducting posterior predictions for a hypothetical tumor

type for four different censoring scenarios to cover the full

range of predictions

• The fixed effects part of the intercept corresponds to the

overall tumor population, and a basket-specific random

effects part of the intercept β0 is added to the linear

predictor

• Covariate inclusion is conducted via coefficient β1

• The parameters to be estimated for each model are β0j,

β0, β1, σ0 and σy

• Survival extrapolation is conducted plugging the

estimated model parameter(s) into the cumulative

distribution function. Depending on the baseline hazard

distribution, different transformations are necessary

1) Run BHM through brms (1), 
including individual baskets as

random effects.

2) Estimate
location/scale/shape/rate from

BHM‘s posterior.

3) Estimate S(t) as converse
probability of CDF F(t) as

S(t)=1-F(t) and extrapolate for
follow-up time t.

4) Estimate posterior summaries
on location and scale/rate/shape

parameters. Estimate median and 
95% CrIs of survival probabilities.
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Linear predictor

with default settings on prior

distributions in brms (1), letting the data

speak for themselves:

• Flat uniform priors on intercept 𝛽0
and coefficient 𝛽1

• Weakly informative t priors with

𝜈 =3 degrees of freedom, location

parameter 𝜇 = 0 and scale

parameter 𝜎 = 2.5 on standard

deviations of random intercept

terms 𝑏𝑗
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• Survival extrapolation estimates (S(t)) are

shown in graphical display for the best-fitting

distribution

• Results of fixed effects (black line) and random

effects (colored lines) are presented

• Basket 10 showed the most optimistic survival,

whereas basket 2 was most pessimistic

• Using flat and weakly informative priors,

frequentist confidence intervals were directly

comparable to Bayesian credible intervals

• Figure 5 shows that the width of the 95%

credible intervals was smaller compared to the

confidence intervals for baskets with small

sample size (N=8 shown)

• The credible intervals covered the tumor-specific

Kaplan-Meier curve with increased precision

(smaller interval width). These could be further

incorporated into the probabilistic sensitivity

analysis of a cost-effectiveness model

• The graph on the right shows posterior

predictions for four different censoring rates

• Traditional use of Bayesian Hierarchical Models

(BHMs) in context of basket trials with many

baskets; sample size often varies among baskets

(small or large)

• Preferred method by National Institute for Health

and Care Excellence (NICE) and Canadian

Agency for Drugs and Technologies (CADTH)

which was limited to binary outcome previously

• Application in hypothetical intervention X with 11

baskets to time-to-event outcome based on

simulated data

• Survival extrapolation based on the output of

BHMs to predict survival outcomes for 10 years

needed for health technology assessment (HTA)

RESULTS

• In comparison to frequentist analysis for each

individual tumor type separately, precision of

survival extrapolation was increased by borrowing

strength from the overall population

• Especially beneficial for tumor types with

small sample size

• 95% credible intervals of BHM were much

narrower than 95% confidence intervals of

frequentist analysis

• This increased precision however often

comes at the cost of overly optimistic or

overly pessimistic estimates due to

the effect of shrinkage

• Through the effect of shrinkage (fitness of a predictor

decreasing when applied to new data), all estimates for

individual tumor types were drawn towards estimates for

the overall population, reducing their spread

• The lower the sample size in an individual tumor

type, the higher the effect of shrinkage

• Estimates for tumor types with small sample size

therefore differed the most from the actual data

• For an unobserved hypothetical tumor type, the posterior

predictions were close to the fixed effects estimates for

lower censoring rates

• At the extremes of 90% censoring, survival

extrapolations became unrealistically optimistic due

to number of events being unrealistically low

Figure 1. Basket trials

Figure 3. Structure of BHM

Figure 2. Steps of analysis

Figure 4. Survival extrapolation

Figure 5. Comparison 

to frequentist results
Figure 6. Posterior 

predictions


