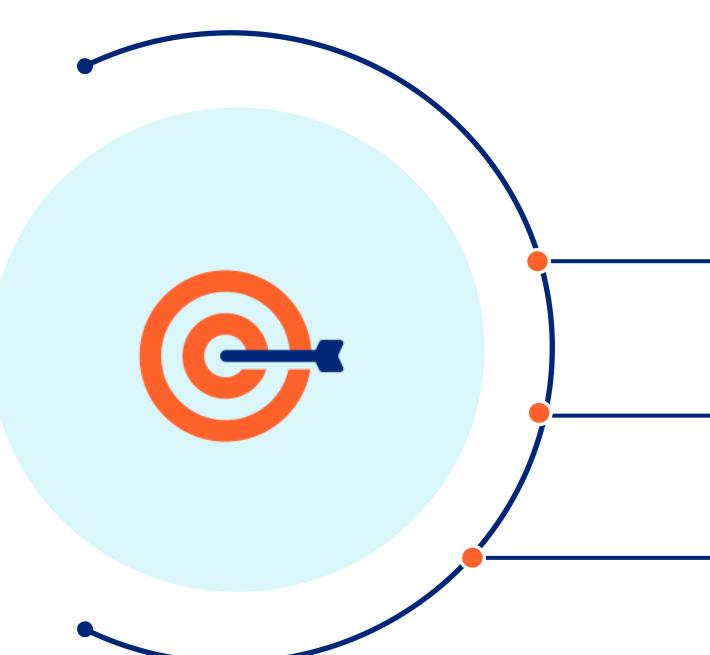


The Value of Discrete Choice Experiments to Identify Gaps in Care for Patients with Rare Diseases


Carlyle, M., Russell, K., Misra, A.

Optum, Eden Prairie, MN, USA

INTRODUCTION

- Discrete Choice Experiments (DCEs) are increasingly recognized within Health Economics and Outcomes Research (HEOR) as a robust method for quantifying treatment preferences and enhancing the interpretability of real-world evidence (RWE).
- When combined with precision-patient- finding enabled with medical and pharmaceutical claims, DCEs can be used to understand treatment preferences in rare diseases and amongst specific patient groups providing even more valuable insights and learnings.
- By systematically eliciting trade-offs individuals are willing to make among competing attributes—such as efficacy, safety, cost, and convenience—DCEs provide insights into value perceptions that traditional RWE sources may overlook.

OBJECTIVE

This study aims to:

- Describe the literature where DCEs are utilized to quantify treatment preferences
- Summarize the methods used and insights gained
- Identify areas for improving the inclusion of patient-reported preferences in treatment decision making..

METHODS

A targeted review of recent literature was conducted to identify studies that evaluated patient reported/directly elicited preferences for oral, intravenous (IV) or subcutaneous (SC) treatment for non-small cell lung cancer (NSCLC). The initial search was executed in March 2025 in the PubMed database, limited to human studies published in English between January 2015 and December 2024. A grey literature search was also conducted using Google and bibliographic reviews of relevant reviews.

PICOTS-G

Population	Oncology patients - cancer, oncology, oncology field, oncologies, growth, tumor, malignancy, malignance, melanoma, sarcoma, malignant cells, lymphoma
Intervention	Oral - orals, oral by mouth, per os, per oral route, oral route, oral route of drug;
Intravenous - Intravenous, injection, injecting, intravenous route, intravenous route of drug;	
Subcutaneous - subcutaneous, subcutaneous injection, hypodermic, subq, superficial fascia	
Comparator	Oral, IV, SC (compared either or all treatment routes)
Outcomes	
Treatment Preference	
Time Frame	2015-2024
Geography	United States

RESULTS

The initial PubMed search yielded 2,891 articles. After screening and exclusion, 42 studies were selected for full-text review. After review, 15 studies¹⁻¹⁶ were identified and included in this analysis, five¹³⁻¹⁷ from grey literature.

Design	Cross-sectional (13) Randomized Controlled Trial (3)
Patient sample size	≤100 (4) 101-200 (7) 201-300 (1) >300 (3)
Methodology	Patient preference questionnaire (4) Discrete choice experiment (11) Best-word scaling (1) Modified threshold technique (1) Treatment satisfaction questionnaire (1)
Diagnoses	Breast cancer (3) Follicular lymphoma (2) Hepatocellular cancer (1) Leukemia (1) Melanoma (1) Multiple myeloma (1) Myelodysplastic syndromes (1) Non-small cell lung cancer (2) Ovarian cancer (1) Prostate cancer (2) Any cancer (1)

KEY FINDINGS

Preference Elicitation Methods in Patient-Centered Research

- 11 studies used **Discrete Choice Experiments (DCE)**^{1,3-5, 7-10, 12, 14, 15}
- 1 study combined **DCE + Best-Worst Scaling**³
- 1 study used **Modified Threshold Technique**¹³
- 4 studies used **Preference Questionnaires**^{2, 6, 11, 16}

DCEs addressed:

- Efficacy (progression-free survival, life extension, overall survival, etc.)
- Safety (side effects changes, reduction in adverse events and toxicity-free days, etc.)
- Treatment requirements (mode and frequency of administration, duration of treatment, etc.)
- Costs (out-of-pocket and insurance-related)

Patient preference questionnaires addressed:

- Reasons for preferences included: less emotional distress, less clinic time, lower injection-site pain, more comfort during administration

Patient preferences for modes of treatment administration

- 9 studies compared **Oral vs. IV infusion**
 - Patients preferred oral therapy over IV infusion when no other attributes were considered.¹³
 - In a study of patients with prostate cancer,¹⁰ mode of administration was least important, compared to pain control, side effects and time to metastasis.
 - In a study of patients with ovarian cancer,⁴ dosing regimen was less influential than personal cost or progression-free survival (PFS).
 - When cost and PFS were held constant 49% chose monthly IV (cognitive symptoms, no nausea/neuropathy), 47% chose daily oral (nausea, no cognitive/neuropathy), and 4% chose weekly IV (mild neuropathy + cognitive symptoms)⁴
 - In a study of advanced hepatocellular carcinoma¹³ the therapy's adverse event profile offset its utility compared to IV therapy.

KEY FINDINGS, cont.

- In relapsed/refractory follicular lymphoma⁸ Patients preferred all-oral treatments and were willing to trade PFS for oral administration over weekly IV infusions.
- Patients with NSCLC^{7,17} preferred a therapy profile with the longest PFS and the lowest severe safety risk. DCE assessed trade-offs between benefits, safety and dosing convenience. Patients were willing to trade 7-8 months of PFS to switch from IV to oral treatment.

1 study compared **Oral vs. SC injection**⁹

- In a study of prostate cancer patients, those who favored an oral route of administration included the highest proportion of ADT-naïve patients while those who favored SC injection preferred infrequent injections, symptom resolution and lower out-of-pocket costs and had the highest proportion of ADT-experienced patients.

4 studies compared **IV infusion vs. SC injection**^{2,11,14,16}

- 3 of 4 studies reported strong patient preference for SC injections^{2,11,16} citing reduced clinic time and comfort during administration.
- In a study of breast cancer patients, preference was for life extension followed by out-of-pocket costs, route of administration and availability of tests to evaluate treatment efficacy.

1 study compared **Oral vs. IV infusion vs. SC injection**⁵

- While disease recurrence has the highest relative attribute importance, level of fatigue, number of health care visits, route of administration and frequency of administration were also identified as important.
- Patients reported being willing to accept a 2-3% increase in risk of recurrence as a trade off, preferring oral therapy to IV or SC administration.
- Where oral therapy was not available patients preferred SC.

Additional findings

- 6 studies reported associations between patient characteristics and patient preferences^{3,6,9,13,14,15} including:

- age (specifically 65 years or older, compared to younger patients),
- family history,
- education (e.g., patients with a 4-year degree or higher education readily switched from oral to IV infusion considering the risk of hand-foot skin reaction and diarrhea),
- disease state (metastatic vs. not metastatic),
- stage at diagnosis, and
- mutation status (endocrine refractory HR+ vs. TNBC breast cancer).

suggesting that patient preferences aren't one-size-fits-all.

- Patients were willing to trade 1.3-11.4 months of PFS in order to decrease side effects or change between modes of administration. Patients with fewer lines of therapy (LOTs) (≤ 1) were more likely to try more toxic treatments or those with lesser benefits, while patients with higher LOTs (≥ 2) were likely to trade more PFS for a less intensive mode of treatment administration than those with fewer LOTs.¹⁷

CONCLUSION


The most frequently reported attributes influencing patient treatment preferences were **efficacy (especially progression-free survival), safety (side effect profiles), mode of administration, and cost**. Patients consistently valued treatments that offered longer survival, fewer adverse events, greater convenience (e.g., oral over IV), and lower out-of-pocket expenses.

REFERENCES

- O'Shaughnessy J, Sousa S, Cruz J, et al. Preference for the fixed-dose combination of pertuzumab and trastuzumab for subcutaneous injection in patients with HER2-positive early breast cancer (PHranceSCa): A randomised, open-label phase II study. *Eur J Cancer*. 2021;152:223-232. doi:10.1016/j.ejca.2021.03.047
- Mansfield C, Ndife B, Chen J, Gallaher K, Ghate S. Patient preferences for treatment of metastatic melanoma. *Future Oncol*. 2019;15(11):1255-1268. doi:10.2217/fon-2018-0871
- Havrilesky LJ, Scott AL, Davidson BA, et al. The preferences of women with ovarian cancer for oral versus intravenous recurrence regimens. *Gynecol Oncol*. 2021;162(2):440-446. doi:10.1016/j.ygyno.2021.05.022
- Zeidan AM, Tsai JH, Karimi M, et al. Patient Preferences for Benefits, Risks, and Administration Route of Hypomethylating Agents in Myelodysplastic Syndromes. *Clin Lymphoma Myeloma Leuk*. 2022;22(9):e853-e866. doi:10.1016/j.cml.2022.04.023
- Dhakal P, Wichman CS, Pozehl B, et al. Preferences of adults with cancer for systemic cancer treatment: do preferences differ based on age?. *Future Oncol*. 2022;18(3):311-321. doi:10.2217/fon-2021-0260
- Bridges JF, la Cruz M, Pavlack M, et al. Patient preferences for attributes of tyrosine kinase inhibitor treatments for EGFR mutation-positive non-small-cell lung cancer. *Future Oncol*. 2019;15(34):3895-3907. doi:10.2217/fon-2019-0396
- Thomas C, Marsh K, Trapali M, et al. Preferences of patients and physicians in the United States for relapsed/refractory follicular lymphoma treatments. *Cancer Med*. 2024;13(19):e70177. doi:10.1002/cam4.70177
- Hauber B, Hong A, Hunsche E, Macalaitis MC, Collins SP. Patient Preferences for Attributes of Androgen Deprivation Therapies in Prostate Cancer: A Discrete Choice Experiment with Latent Class Analysis. *Adv Ther*. 2024;41(10):3934-3950. doi:10.1007/s12325-024-02955-1
- George DJ, Mohamed AF, Tsai JH, et al. Understanding what matters to metastatic castration-resistant prostate cancer (mCRPC) patients when considering treatment options: A US patient preference survey. *Cancer Med*. 2023;12(5):6040-6055. doi:10.1002/cam4.5313
- Rummel M, Kim TM, Aversa F, et al. Preference for subcutaneous or intravenous administration of rituximab among patients with untreated CD20+ diffuse large B-cell lymphoma or follicular lymphoma: results from a prospective, randomized, open-label, crossover study (PrefMab). *Ann Oncol*. 2017;28(4):836-842. doi:10.1093/annonc/mdw685
- Ravelo A, Myers K, Brumble R, et al. Patient preferences for chronic lymphocytic leukemia treatments: a discrete-choice experiment. *Future Oncol*. 2024;20(28):2059-2070. doi:10.1080/14796694.2024.2348440
- Parikh ND, Girvan A, Coulter J, et al. Risk thresholds for patients to switch between daily tablets and biweekly infusions in second-line treatment for advanced hepatocellular carcinoma: a patient preference study. *BMC Cancer*. 2023;23(1):66. Published 2023 Jan 19. doi:10.1186/s12885-022-10388-8
- Hollin IL, González JM, Buelt L, Ciarametaro M, Dubois RW. Do Patient Preferences Align With Value Frameworks? A Discrete-Choice Experiment of Patients With Breast Cancer. *MDM Policy Pract*. 2020;5(1):2381468320928012. Published 2020 Jun 15. doi:10.1177/2381468320928012
- Amin S, Tolany SM, Cambron-Mellott MJ, et al. Benefit-risk trade-offs in treatment choice in advanced HER2 negative breast cancer: patient and oncologist perspectives. *Future Oncol*. 2022;18(16):1927-1941. doi:10.2217/fon-2021-0761
- Mateos MV, Rigaudeau S, Basu S, et al. Switching to daratumumab SC from IV is safe and preferred by patients with multiple myeloma. *J Oncol Pharm Pract*. 2023;29(5):1172-1177. doi:10.1177/10781552221103551
- Janse S, Janssen E, Huwig T, et al. Line of therapy and patient preferences regarding lung cancer treatment: a discrete-choice experiment. *Curr Med Res Opin*. 2021;37(4):643-653. doi:10.1080/03007995.2021.1888707

Disclosure: This study was exclusively for research purposes and all authors declare no conflict of interest.

Corresponding author: Maureen Carlyle (maureen.Carlyle@optum.com)

