

Disease Progression Modelling for an Ultra-Rare Disease: Lysosomal Acid Lipase Deficiency (LAL-D)

Bourbon, Mafalda¹; Canbay, Ali²; Indolfi, Giuseppe³; Lacaille, Florence⁴; Pastor, José⁵; Quintero, Jesús⁶; Tummolo, Albina⁷; Male, Natalia⁸; Merino-Montero, Sandra⁹; Aguirre, Josu¹⁰; Pinel, Marco¹¹

1. National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal; 2. University Hospital Knappschaftskrankenhaus Bochum, Bochum, Germany; 3. Meyer Children's University Hospital, Florence, Italy; 4. Necker-Enfants Malades University Hospital, Paris, France; 5. General University Hospital of Elche, Alicante, Spain; 6. Vall d'Hebron University Hospital, Barcelona, Spain; 7. Giovanni XXIII Children's Hospital, Bari, Italy; 8. HEOR. Alexion, AstraZeneca Rare Disease, Barcelona, Spain; 9. Market Access. Alexion, AstraZeneca Rare Disease, Barcelona, Spain; 10. IQVIA, Barcelona, Spain; 11. IQVIA, Madrid, Spain.

CO75

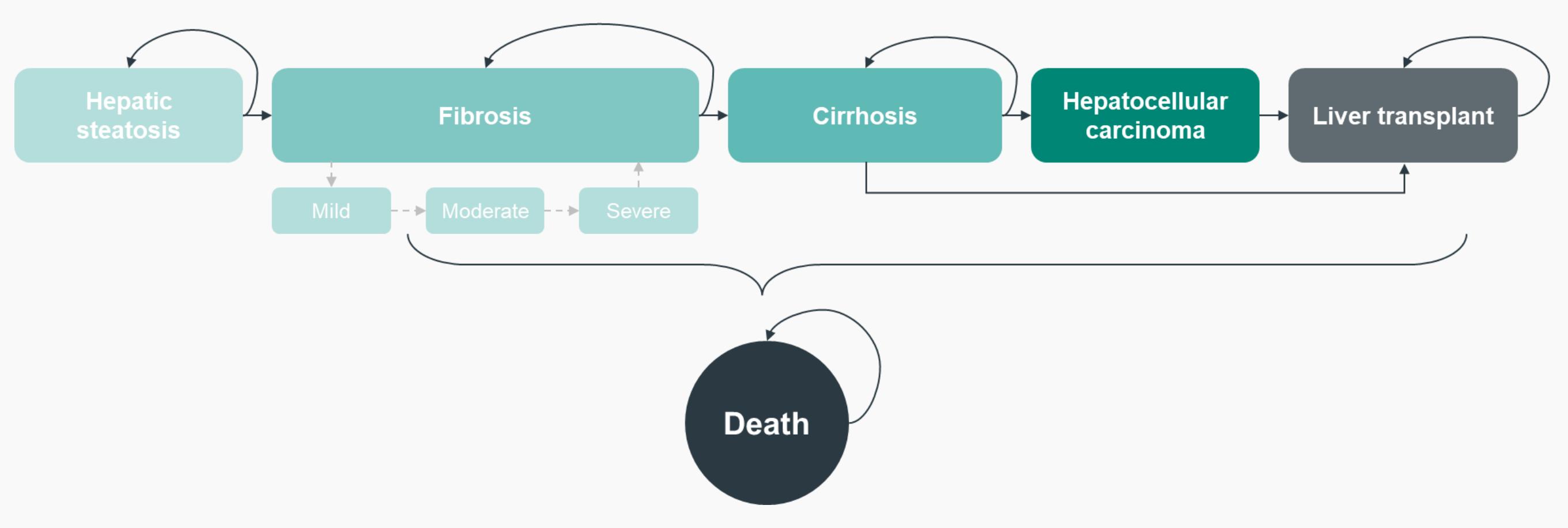
BACKGROUND AND OBJECTIVE

- Lysosomal acid lipase deficiency (LAL-D) is an **ultra-rare, progressive, autosomal recessive disorder** caused by pathogenic variant in the LIPA gene that leads to a lack of the lysosomal acid lipase (LAL) enzyme activity [1-3].
- LAL activity deficiency or absence results in **disruption of intralysosomal degradation of cholesterol esters and triglycerides and accumulation of relevant substrates** in organs like the liver and spleen, leading to liver disease, high cholesterol, and eventually cardiovascular issues [1,3,4].
- LAL-D has both severe, infantile-onset forms (formerly Wolman disease) that are often fatal, and less severe, progressive forms, **cholesterol ester storage disease (CESD)**, often heralded by an

abnormal lipid profile, liver function abnormalities or gallstones as incidental findings. **CESD can manifest in childhood or later years as an adult** [3].

- LAL-D guidelines focus on **enzyme replacement therapy (ERT)** with sebelipase alfa (Kanuma®) for patients with LAL-D, emphasizing **early and continuous treatment**, as well as the need for a low-fat diet, regular physical activity, and alcohol avoidance [4-6].
- The objective of this project was **to develop a disease progression model, specific for LAL-D, focused on the progressive form of the disease (excluding infantile onset disease)**, capturing clinical heterogeneity and the link between earlier onset and greater severity.

METHODS


Model structure

- The disease progression model was developed in Excel to **characterize three scenarios of LAL-D progression (excluding infantile onset disease)**:
 - Untreated** patients with CESD (natural history),
 - Early initiation** of treatment with sebelipase alfa at diagnosis in patients with CESD,
 - Late initiation** of sebelipase alfa after diagnosis in patients with CESD, once organ damage is evidenced.

Hepatic progression

- A **six-state Markov model** was constructed to simulate progression from hepatic steatosis through fibrosis, advanced cirrhosis, and death (Figure 1).

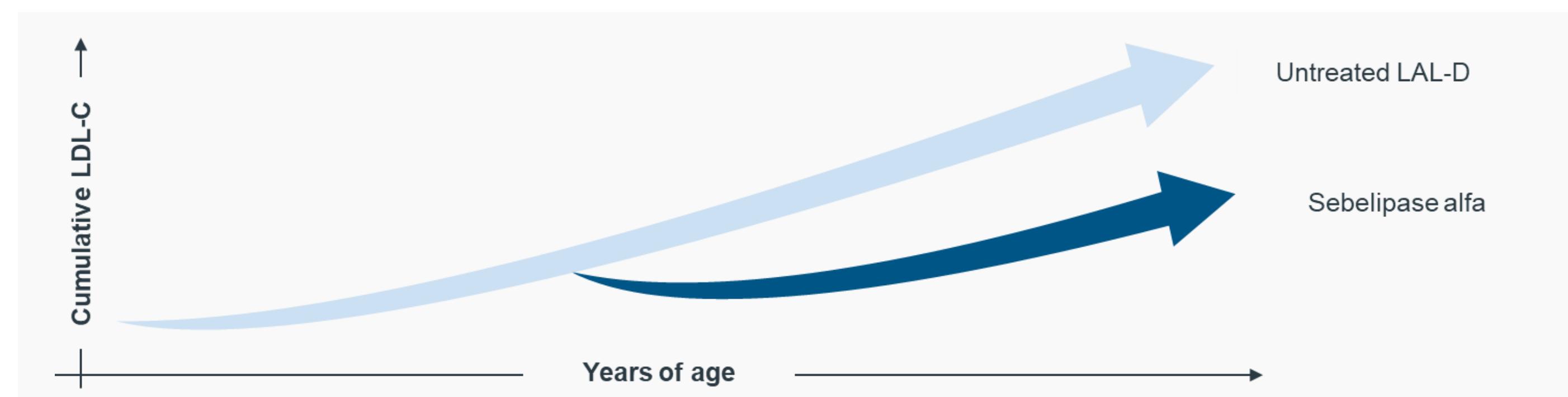
Figure 1. Model structure for the hepatic profile

Data Sources

- Efficacy inputs for SA were sourced from **clinical trials** (LAL-CL02 [7] and LAL-CL06 [8]), incorporating its effects on both **hepatic fibrosis stages** and **LDL-C levels**.
- Natural history** of the disease and **epidemiological data** were sourced from the **literature** [9-13].

Base Case

- The base case was set at **baseline age** from the LAL-D international registry [9], and **severe organ damage**, e.g. liver failure, assumed to occur 27 years after diagnosis.


RESULTS & CONCLUSION

- Hepatic profile:** in the base case, 70 years after disease onset, **early SA treatment resulted in a 31.6% reduction in the probability of death** compared to untreated patients and an 8.0% reduction compared to late SA treatment.
- Lipidic profile:** in the base case, 70 years after disease onset, **patients treated with SA upon diagnosis had a 0.8% annual risk of MI due to lipid accumulation**, compared to 9.7% with delayed treatment and 30.3% without treatment.

Lipidic/cardiovascular progression

- An LDL-C accumulation model was designed to capture the progressive increase in cardiovascular risk (Figure 2).
- After reaching a **predefined LDL-C threshold**, the risk of myocardial infarction (MI) rose with continued lipid buildup.
- In the model, treatment effect was represented by **lowering LDL-C concentrations**, which in turn reduced the **rate of lipid accumulation** and consequential **cardiovascular risk**.

Figure 2. Model structure for the lipidic profile

Model Validation

- Model assumptions, structure, and data sources were **validated by a panel of international lipidologists and hepatologists** with extensive experience in managing LAL-D*.
- The model was **not intended to predict individual patient outcomes** but to provide a **structured framework for exploring disease trajectories and supporting multidisciplinary clinical discussions**.

Early diagnosis and treatment with sebelipase alfa improve survival and reduce cardiovascular events, highlighting the need for timely intervention in LAL-D.

LAL-D progression is heterogeneous, often involving both hepatic and cardiovascular complications, requiring a holistic, multidisciplinary approach to patient care.

REFERENCES

[1] Kohli R et al. Initial assessment and ongoing monitoring of lysosomal acid lipase deficiency in children and adults: Consensus recommendations from an international collaborative working group. Molecular Genetics and Metabolism. 2020;129(2):59-66. [2] Candolo ACR et al. Lysosomal Acid Lipase Deficiency in the Etiological Investigation of Cryptogenic Liver Disease in Adults: A Multicenter Brazilian Study. Gastroenterology. 2017;12(9):670-9. [3] de Las Heras J et al. Practical Recommendations for the Diagnosis and Management of Lysosomal Acid Lipase Deficiency with a Focus on Wolman Disease. Nutrients. 2024;16(24):4309. [5] Carnarela C et al. Actualización en deficiencia de lipasa ácida lisosomal: diagnóstico, tratamiento y seguimiento de los pacientes. Medicina Clínica. 2017;148(9):429-e1. [6] Hermida-Ameijeiras A et al. Childhood to adult transition in youth patients with lysosomal acid lipase deficiency: 43 recommendations from experts. Orphanet Journal of Rare Diseases. 2025;20:337. [7] Clinicaltrials.gov. Acid Lipase Replacement Investigating Safety and Efficacy (ARISE) in Participants With Lysosomal Acid Lipase Deficiency (NCT01757184). 2012. [Updated: 2020]. Accessed: 22 June 2022. [8] Clinicaltrials.gov. Safety and Efficacy Study of Sebelipase Alfa in Participants With Lysosomal Acid Lipase Deficiency (NCT0212994). 2014. [Updated: 2019] Accessed: 22 June 2022. [9] Balwanji M et al. Lysosomal acid lipase deficiency manifestations in children and adults: Baseline data from an international registry. Liver Int. 2023;43:1537-1547. [10] Bernstein et al. Cholesterol ester storage disease: review of the findings in 135 reported patients with an underdiagnosed disease. Journal of hepatology. 2013; 58(6):1230-43. [11] Vuorio et al. Statin treatment of children with familial hypercholesterolemia—trying to balance incomplete evidence of long-term safety and clinical accountability: are we approaching a consensus? Atherosclerosis 2013; 226(2): 315-20. [12] Ference B et al. Impact of Lipids on Cardiovascular Health: JACC Health Promotion Series. JACC. 2018 Sep; 72 (10) 1141-1156. [13] Jortveit et al. Incidence, risk factors and outcome of young patients with myocardial infarction. Heart 2020; 106(8):1420-1426.

ACKNOWLEDGEMENTS: The authors wish to thank the various clinical reviewers of the model for their valuable feedback.

DISCLOSURE: This study was funded by Alexion Pharmaceuticals and conducted by IQVIA. The members of the Steering Committee participated voluntarily and received funding as applicable according to their role during the model development. N. Malé and S. Merino-Montero are staff of Alexion. J. Aguirre and M. Pinel are staff of IQVIA.

***NOTE:** Model assumptions, structure, data sources and panel of experts has shaped the outcomes of the study, any difference on the data analysis could derive on a variation of outcomes.