

Artificial Intelligence in Evidence Synthesis: A Systematic Review and Meta-Analysis of Emerging Biologics for Improving Skeletal Health in Osteogenesis Imperfecta

HKU
Med

LKS Faculty of Medicine
The University of Hong Kong
香港大學李嘉誠醫學院

CSMPR SCAN 2030

Chengfei Li, MPH^{1*}, Zonglin Dai, PhD^{2*}, Wing Chung Tang, PhD³, Zesen Gao, MSC⁴, Vivien K Y Chan, PhD¹, Mariana Ramirez-Posada, PhD⁵, Jiyeong Kim, PhD⁵, CL CHEUNG, PhD¹, Ian Wong, PhD¹, Dong Dong, PhD⁶, Michael To, PhD⁷, Dawn Craig, PhD⁸, Xue Li, PhD^{2#}

¹Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, Hong Kong

²Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, Hong Kong

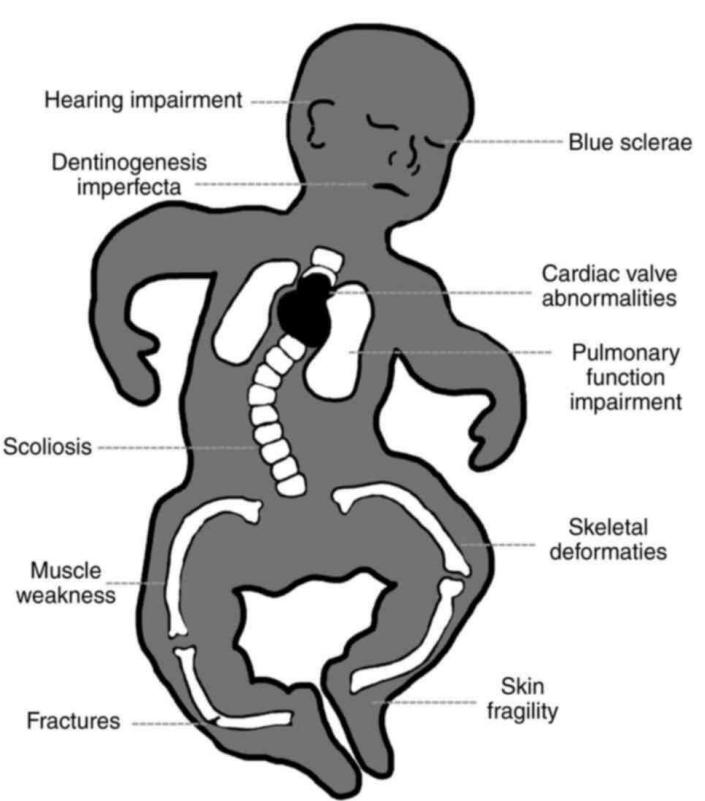
³Yu Chun Keung Medical Library, The University of Hong Kong, Hong Kong SAR, Hong Kong

⁴The University of Hong Kong Libraries, The University of Hong Kong, Hong Kong SAR, Hong Kong

⁵Stanford Center for Digital Health, Department of Medicine, Stanford University, Stanford, CA, USA

⁶The Jockey Club School of Public Health and Primary Care (JCSPHPC), The Chinese University of Hong Kong, Hong Kong SAR, Hong Kong

⁷Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, Hong Kong


⁸Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom

* Co-first authors

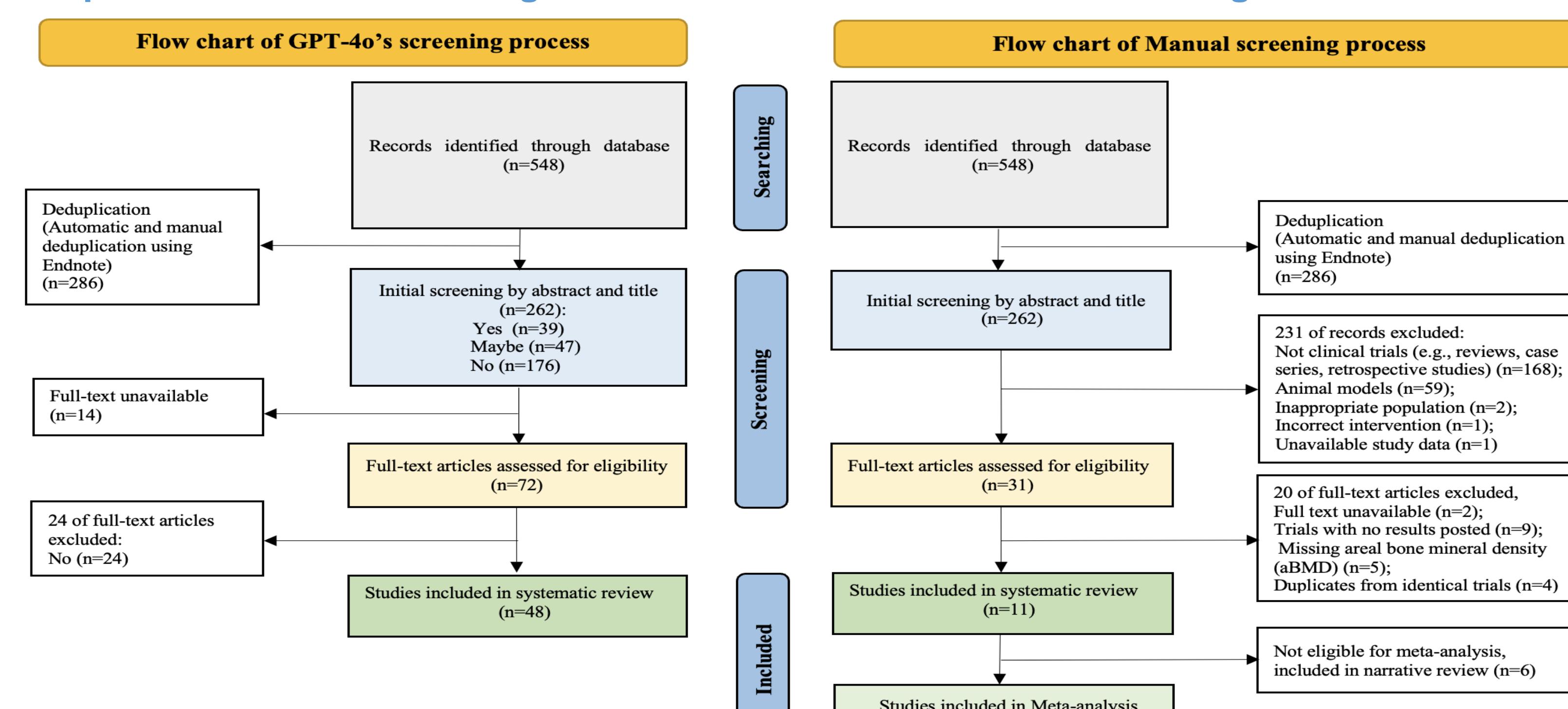
Corresponding author: sxueli@hku.hk

EPH19

INTRODUCTION

Osteogenesis imperfecta (OI)

- Rare genetic disorder
- Standard of care: bisphosphonates
- Emerging therapies: biologics (mechanism-targeted; evidence fragmented)
- Objective: To systematically evaluate the effectiveness and safety of biologics in OI using artificial intelligence (AI)-assisted evidence synthesis.

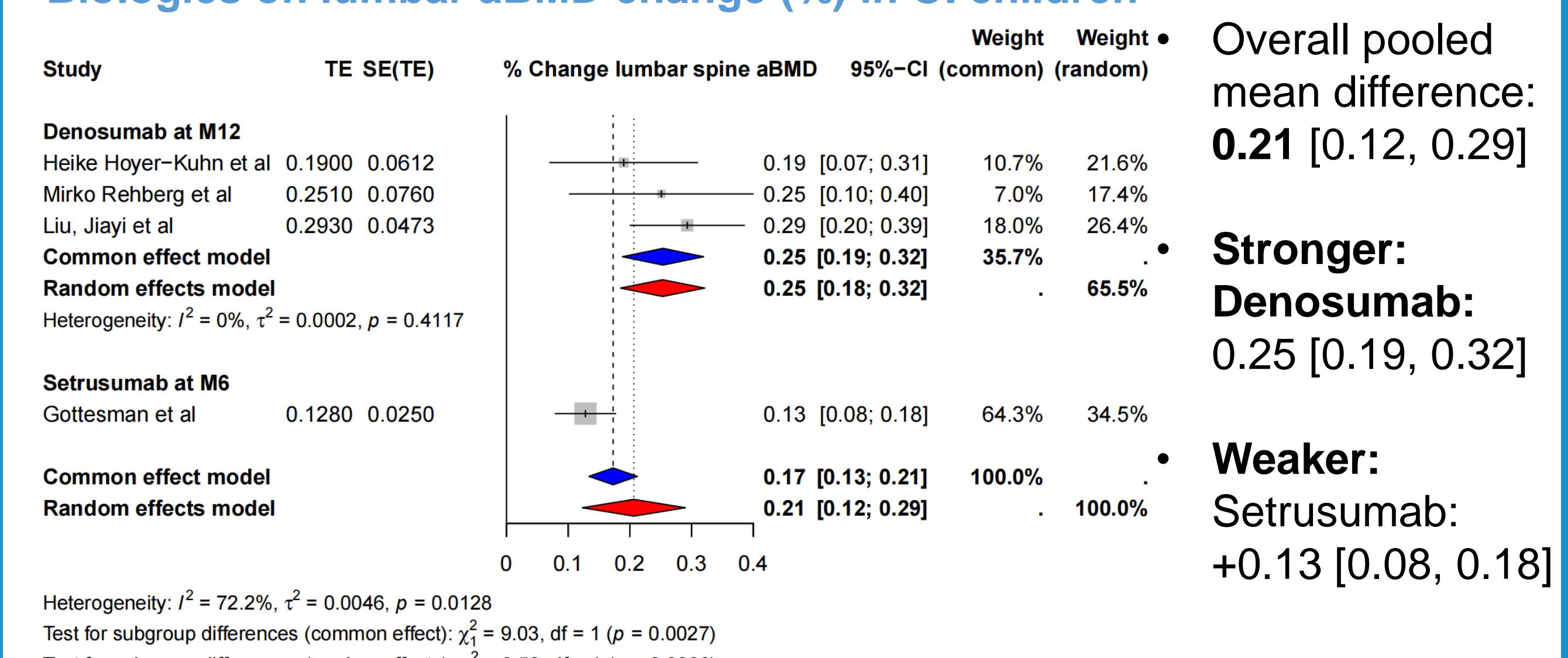

METHOD

- Systematic review and random-effects meta-analysis of trials on denosumab, setruseumab, teriparatide, and fresolimumab in OI.
- **Primary outcomes:** change (%) in areal bone mineral density (aBMD); fracture incidence; safety profiles.
- **AI-assisted workflow:** GPT-4o (2024-08-06 API) assisted title/abstract screening and risk-of-bias appraisal using rule-based prompts.
- **Performance validation:** Compared AI to human using sensitivity, specificity, and weighted Cohen's kappa.

RESULTS

- AI showed high sensitivity in abstract (96.8%) and full-text screening (90.9%), cut screening time by over 95%, and was ~100 times faster per article than humans.
- Agreement with humans in quality assessment was substantial ($\kappa = 0.806$).

Comparative PRISMA flow diagram of AI-assisted and Manual Screening

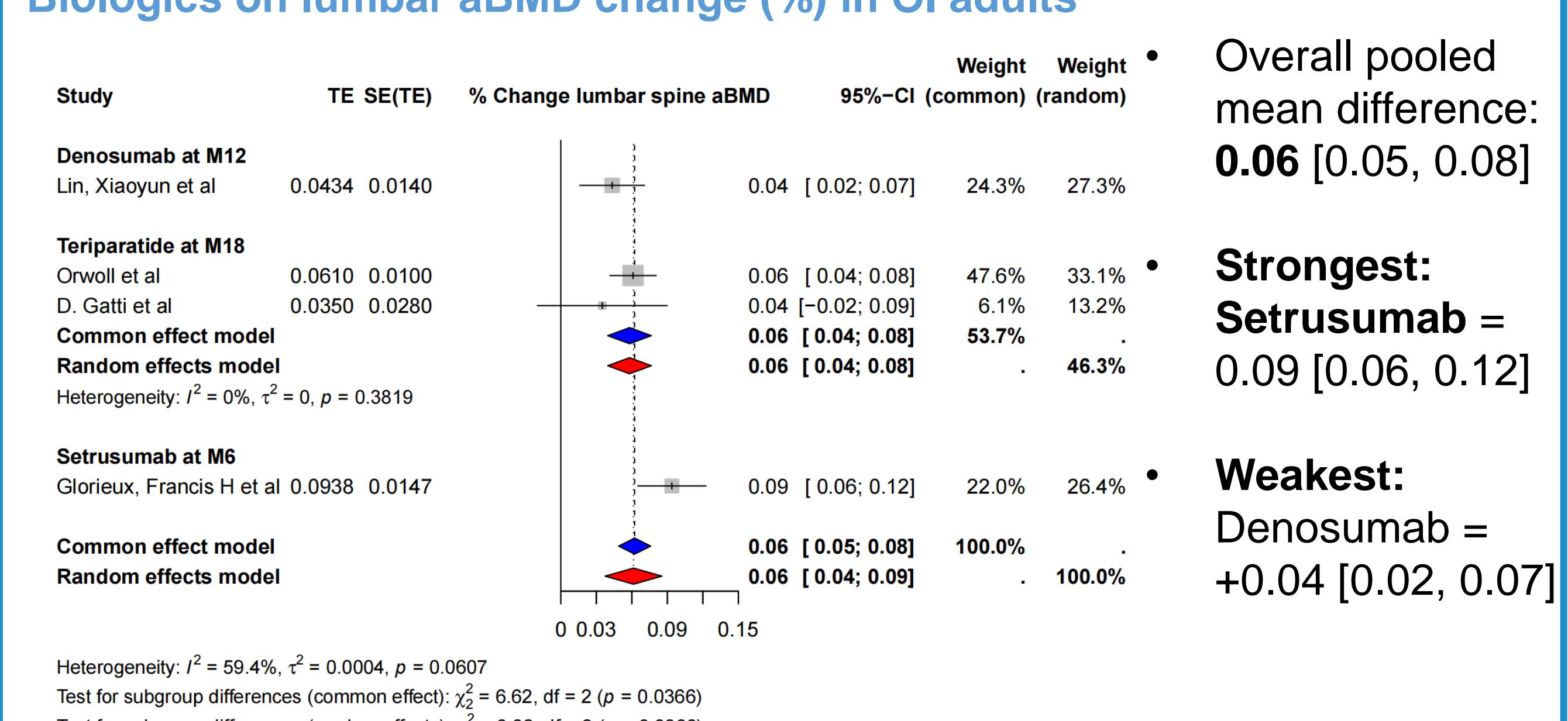


Quality assessment results of human and GPT-based tools

Study	Liu et al	Hoyer-Kuhn et al	Lin et al	Amgen Inc	Rehberg et al	Orwoll et al	Gatti et al	Glorieux et al	Gottesman et al
Five Domains	Questions	AI	Human	AI	Human	AI	Human	AI	Human
Randomization	1.1	Y	Y	Y	Y	Y	Y	Y	Y
	1.2	Y	NI	PY	Y	Y	NI	Y	Y
	1.3	N	N	Y	N	N	Y	N	NI
Assignment*	2.1	Y	Y	Y	Y	Y	Y	Y	N
	2.2	Y	Y	Y	Y	Y	Y	Y	N
	2.3	N	N	N	N	N	NA	NA	NA
	2.4	NA							
	2.5	NA							
	2.6	Y	Y	Y	Y	Y	Y	Y	Y
	2.7	NA							
	3.1	Y	PY	Y	PN	Y	Y	N	Y
Missing outcome*	3.2	NA	NA	NA	PY	NA	NA	NA	NA
	3.3	NA							
	3.4	NA							
	4.1	N	N	N	N	N	N	N	N
	4.2	N	N	N	N	N	N	N	N
Measurement*	4.3	Y	Y	Y	Y	Y	Y	N	Y
	4.4	Y	PY	PN	PN	PY	PN	Y	NA
	4.5	N	PY	NA	NA	PY	NA	NA	NA
	5.1	Y	Y	PY	Y	NI	Y	NI	NI
Selection *	5.2	N	N	N	N	N	N	N	NI
	5.3	N	N	N	N	N	N	N	NI
Overall study risk of bias	Some	High	Low	Low	Some	High	High	Some	Some
Cohen's weighted κ (95%CI)	0.779 (0.562, 0.996)	0.662 (0.357, 0.967)	0.765 (0.519, 1.011)	0.702 (0.374, 1.030)	0.763 (0.483, 1.043)	0.692 (0.399, 0.986)	0.677 (0.419, 0.935)	0.562 (0.171, 0.953)	0.912 (0.805, 1.019)
Weighted overall κ (95%CI)									0.806 (0.734, 0.879)

Note*: Assignment: effect of assignment to intervention; Missing data: missing outcome data; Measurement: measurement of the outcome; Selection: selection of the reported result.

Biologics on lumbar aBMD change (%) in OI children



Overall pooled mean difference: **0.21** [0.12, 0.29]

Stronger:
Denosumab: **0.25** [0.19, 0.32]

Weaker:
Setruseumab: **+0.13** [0.08, 0.18]

Biologics on lumbar aBMD change (%) in OI adults

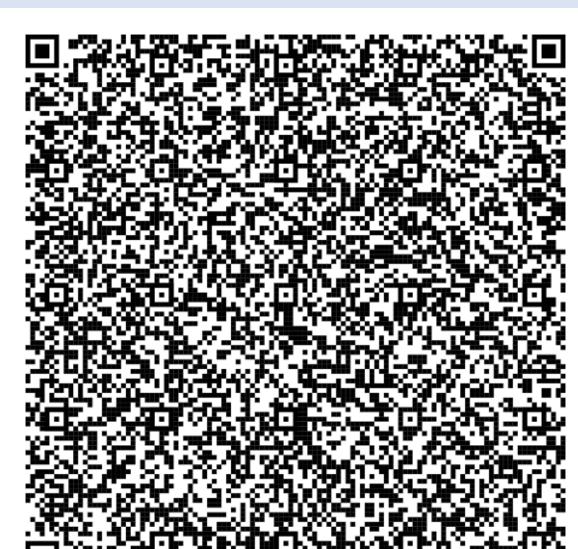
Overall pooled mean difference: **0.06** [0.05, 0.08]

Strongest:
Setruseumab = **0.09** [0.06, 0.12]

Weakest:
Denosumab = **+0.04** [0.02, 0.07]

AI performance in literature Screening

Document type	Human			Sensitivity (TP/[TP+FN])	Specificity (TN/[TN+FP])	Screening time (seconds/paper, mean ± SD)	Estimated time for manual screening (minutes/paper)
	Positive	Negative	Total				
Title & Abstract	Positive	30	56	86	96.8%	75.8%	3.50±0.14
	Negative	1	175	176			
	Total	31	231	262			
	Positive	10	38	48			
Full-text	Negative	1	213	214	90.9%	84.9%	9.67±1.85
	Total	11	251	262			


Abbreviations: TP, true positive; FN, false negative; TN, false positive; FP, false positive

CONCLUSIONS

- GPT-4o enhances evidence synthesis by increasing screening efficiency and improving quality assessment, providing a scalable way to reduce manual workload; human oversight remains crucial for tasks that require contextual understanding and clinical reasoning.
- Denosumab and setruseumab effectively improve lumbar spine aBMD in OI, but current evidence does not confirm a reduction in fracture risk with biologics.

CONTACT INFORMATION

- Contact person: Xue Li (sxueli@hku.hk)
- LinkedIn: Shirley, Xue Li

