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Value of GVD automation
• Global Value Dossiers (GVDs) support market access,

reimbursement, and pricing decisions by providing comprehensive

evidence on the disease and treatment value

• The development of GVDs requires integration of diverse evidence

sources, including clinical trial data, real-world evidence, health

economics models, and patient-reported outcomes

• Manual GVD creation can be time-consuming and error-prone due

to changing market dynamics and competitive settings

• Generative Artificial Intelligence (GenAI) accelerates GVD

development by automating evidence synthesis, content

generation, and enhancing speed, consistency, and accuracy,

while empowering experts to focus on high-value strategic

decision-making

Objective

• This study aimed to evaluate the feasibility of using generative

artificial intelligence (GenAI) to automate the creation of key

sections within a GVD, integrating Retrieval-Augmented

Generation (RAG) pipelines, and a multi-agent approach to

produce accurate, traceable outputs with human oversight

Methods
• The platform integrates a RAG framework, enhancing language

models with external evidence, together with a multi-agent system

to process and synthesize clinical, economic, and access evidence

needed for comprehensive GVD development

• It is built on a layered architecture using Python 3.11, FastAPI

microservices, and PostgreSQL databases, with a React-based

interface connected to Amazon Web Services (AWS) Bedrock-hosted

Large Language Models (LLMs) (claude sonnet 3.7) to automate and

streamline dossier creation and updates

Phase-1

Data Migration & Pre-processing

• In Phase 1, Input data were uploaded and migrated into the RAG

data pipeline for processing and retrieval

• All external materials used in the RAG pipeline were sourced under

appropriate licenses, ensuring compliance with intellectual

property rights

• Multiple input data formats (PDF, Word, PPT, and TXT) were

processed through RAG data pipeline

• Each file format has a different data structure and required

customized preprocessing workflows to extract content

appropriately

• Scanned or image-based content was converted into machine-

readable text using Optical Character Recognition (OCR)

• Text and tables converted into Markdown, a lightweight and

structured text format that preserves headings, lists, and basic

formatting

• Images extracted separately for multimodal processing

• Markdown documents broken down into meaningful, context-aware

chunks using Node-based Markdown Chunking

• AI agents analyzed extracted images to generate descriptive

captions

• Text chunks and image captions were converted into vector

embeddings to enable semantic search and retrieval

Data Storage for Access and Traceability

• For centralized, scalable, and secure access, preprocessed text

and images were stored in an S3 repository. This further ensured

traceability and expedited retrieval

AI-Enabled Autoclassification

• The evidence was automatically categorized using a specialized AI

agent classifier according to its document type (e.g., Clinical Study

Report (CSR), Systematic Literature Review (SLR), etc.

Phase-2
• This phase focused on generating evidence-based value messages

that capture the clinical, economic, humanistic, and societal value

of a treatment for the GVD

• The dossier value story was generated based on predefined

categories (Comparative, Disease, Economic, Humanistic, Societal)

(Figure 1)

• Contextual value messages produced by agents using data were

stored in the RAG pipeline

• Subject Matter Experts (SMEs) reviewed all the value messages,

with the ability to approve, reject, or edit them

• The approved messages were mapped into the predefined GVD

template following a validation process, assuring traceable and

organized evidence integration

Phase-3
Section-Specific Agents

• Dedicated agents were configured with defined agent name,

prompt, and output type (table, graph, or plot) for different GVD

sections such as Disease Background, Disease Management, and

Unmet Need

• Each agent was initialized with a user-defined prompt specifying

the section context, which was then dynamically refined and

augmented by an integrated backend agent

• Each agent generated content as per the provided context and in

accordance with value messages after retrieving the suitable

evidence chunks from the RAG database

• A total of 140 documents, including journal articles, conference

abstracts, treatment guidelines, epidemiology data sources,

and targeted literature reviews, were uploaded into the RAG pipeline

• This generated a 73-page GVD covering disease background, disease

management, and unmet needs

• SMEs revied the outputs by considering the evaluation parameters

(Relevance, Source Traceability, Language, Accuracy, Accuracy,

Completeness, Overall quality) as shown in Table 1

• Outputs in tabular and graphical formats (such as pie charts, bar/line

graphs) were generated without any human intervention

• Kaplan-Meier and forest plots required manual intervention due to their

statistical intricacies which can mitigated in future by integrating

image processing techniques with GenAI

• Approximately 5% of the disease background section required human

input for specific trial details and indication.

• In the disease management section, around 10% of the content involved

human input, primarily for table formatting and data calculations

• The unmet needs section required minimal human input (about 1%),

limited to minor language modifications

• The AI-generated GVD was assessed by SMEs for completeness,

formatting, and traceability of data points, confirming accuracy of the

output. The AI + human process resulted in 70-80% time savings

compared to a human-only process

• Overall, the AI-assisted GVD generation achieved an accuracy of

approximately 93–95% across all evaluated domains (disease

background, management, and unmet needs), as validated by SMEs,

suggesting high concordance between AI-generated and reference

human-curated outputs

Figure 1: Workflow for Data Pre-processing and Value Message Creation in GVD Development

Figure 2: Configuration of Section-specific agents and response generation

Figure 4: SME validation results demonstrating GVD development.

Figure 5: Manual versus AI-assisted workflow with human oversight

Table 1: Evaluation parameters to validate the agents’ response

• The AI-driven system demonstrated strong capabilities in generating well-structured outputs across multiple sections of the GVD

(epidemiological, humanistic burden, economic burden, and treatment), delivering text, tables, and plots

• The AI-generated GVD underwent review by SMEs to evaluate completeness, formatting, and traceability of data points

• This study demonstrates the feasibility of leveraging GenAI for parts of the GVD creation process, changing the GVD development

timeline from weeks/months to days, while retaining accuracy and traceability. Further research is needed to assess generalizability

across broader use cases

• Future improvements will focus on reducing variability observed when agents are rerun and strengthening systematic SME feedback

loops

Conclusion

Results

Multi-Format Content Generation

• The outputs were generated in three formats, including text,

tables, and graphs, to ensure that both narrative evidence and

quantitative data were represented

Output Parsing into GVD Template

• The validated results were integrated into the GVD template,

including references

• Parser function converted AI-generated outputs into structured and

formatted template

• The main parser coordinates text, table, and graph/plot parsers to

ensure consistent formatting across sections

• The bibliography parser extracts document identifiers from the

text generated by different agents and formats references into a

specific format to ensure accuracy and traceability as shown in

Figure 2

SME Validation

• The SMEs reviewed all outputs (text, tables, graphs) for

completeness, clarity, accuracy, and traceability. SMEs could

accept, reject, or edit the content to ensure high-quality evidence

representation

Parameter Evaluation Focus  

Relevance • Content alignment with study objectives

Language • Clarity, tone, and appropriateness of language

Accuracy • Correctness and factual precision

Completeness • Coverage and sufficiency of content

Source Traceability • Verifiability and documentation of sources

Overall Quality • Comprehensive quality across all parameters
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