Real-World Analysis of Healthcare Resource Utilization in Patients With Coronary Artery Disease Undergoing Paclitaxel-Coated Balloon Angioplasty With And Without Intravascular Ultrasound (IVUS) Guidance Study design **Endpoints** Analysis Jas Min Tan¹, Ruth Sim¹, Vireender Kaur¹, Clement Lim², Callix Wong², Chee Yoong Foo¹, Tamil Selvan Muthusamy³ ¹Health Economics & Outcome Research Group, IQVIA, Malaysia ²Boston Scientific Asia Pacific, Singapore ³Cardiac Vascular Sentral Kuala Lumpur (CVSKL) Hospital, Kuala Lumpur, Malaysia #### Introduction #### **Background:** - Ischaemic heart disease (IHD) is a leading cause of morbidity & mortality¹ - Drug-eluting stents (DES) have improved percutaneous coronary intervention (PCI) outcomes; however, challenges remain, including late thrombosis, prolonged dual antiplatelet therapy (DAPT), and suboptimal healing²⁻⁵ - Drug-coated balloons (DCBs) provide a scaffold-free alternative and have shown promise, particularly in small vessels and in-stent restenosis (ISR)⁶⁻⁸ - Gap: Limited evidence on the role of IVUS guidance in DCB angioplasty #### **Objective:** To evaluate the real-world impact of IVUS guidance during paclitaxel-DCB angioplasty in patients with coronary artery disease (CAD) on: - 12-month restenosis - 12-month target lesion revascularization (TLR) - Healthcare resource utilization (HRU) #### Methods - Retrospective cohort study, tertiary cardiac center, Malaysia - Data source Medical records Computed Tomography Angiography (CTA) and coronary angiograms & reports - 1,245 patients (1,668 lesions) - Population Adult IHD patients treated with Paclitaxel-Coated Balloon from 2019 to 2023 - Groups IVUS-guided vs. angiography-only (at operator's discretion) - - Primary: 12-month lumen restenosis (>50% stenosis) - Secondary: Crude **Adjusted** 0.1 - 12-month TLR HRU: Rehospitalizations, Outpatient Department (OPD) visits, Emergency Department (ED) visits - Time-to-event outcomes (12-mo restenosis, TLR): Kaplan-Meier and Cox proportional hazards regression analyses, with adjustment for patient and lesion characteristics - HRU: two-part regression models for rehospitalizations, OPD visits and ED visits, adjusted for clinical and lesion-level covariates; 95% CIs derived via bootstrap **Restenosis** Number of cases of DCB procedure =1,245 (mean age: 58.80 ± 10.37 years) treated with DCB =1,668 Number of lesions IVUS guided: 656 (39.3%) Non-IVUS guided: 1,012 (60.7%) Figure 1. Study Flow Diagram #### Results #### **Baseline Lesion Characteristics and Lesion Preparation** - Baseline lesion complexity was higher in the IVUS-guided group (Table 1) - IVUS guidance improved vessel measurement, optimized balloon sizing, detection of calcification, and enabled better lesion preparation using advanced plaque modification techniques (Table 2) | Characteristics | Overall | Non-IVUS | IVUS | p-Value | |--|---------------|---------------|---------------|---------| | n, number of lesions | 1668 | 1012 | 656 | | | Lesion type, n (%) | | | | | | In-Stent Restenosis (ISR) or Restenosis (No Prior Stent) | 215 (12.9) | 79 (7.8) | 136 (20.7) | <0.001 | | Lesion complexity: Type C, n (%) | 1098 (65.8) | 570 (56.3) | 528 (80.5) | <0.001 | | Calcified lesion, n (%) | 126 (7.6) | 54 (5.3) | 72 (11.0) | <0.001 | | Ostial, n (%) | 208 (12.5) | 98 (9.7) | 110 (16.8) | <0.001 | | Pre-PCI reference vessel diameter (mm), mean (SD) | 2.80 (0.55) | 2.65 (0.45) | 3.03 (0.62) | <0.001 | | Pre PCI TIMI flow grade, n (%) | | | | | | TIMI-0 | 139 (8.3) | 74 (7.3) | 65 (9.9) | <0.001 | | TIMI-1 | 299 (17.9) | 162 (16.0) | 137 (20.9) | | | Total lesion length (mm), mean (SD) | 38.05 (26.78) | 34.59 (23.86) | 43.43 (30.01) | <0.001 | **Table 1:** Baseline lesion characteristics and vessel complexity | Lesion preparation | Overall | Non-IVUS | IVUS | p-Value | |--|-------------|-------------|-------------|---------| | Conventional balloon, n (%) | 1163 (69.7) | 768 (75.9) | 395 (60.2) | <0.001 | | Super high-pressure balloon, n (%) | 315 (18.9) | 136 (13.4) | 179 (27.3) | <0.001 | | Scoring balloon, n (%) | 464 (27.8) | 262 (25.9) | 202 (30.8) | 0.033 | | Cutting balloon, n (%) | 235 (14.1) | 118 (11.7) | 117 (17.8) | 0.001 | | Atherectomy devices, n (%) | 36 (2.2) | 15 (1.5) | 21 (3.2) | 0.029 | | Maximum balloon post-dilatation size (mm), mean (SD) | 3.49 (0.71) | 3.25 (0.66) | 3.74 (0.67) | <0.001 | Table 2: Lesion preparation #### Primary Endpoint: Restenosis Crude: HR=1.08 CI: [0.7, 1.67] p=0.74 Adjusted *: HR=0.51 CI: [0.30, 0.88] p < 0.05 - Follow-up Angiographic Data: Available for 510 lesions (30.6%) - Restenosis Rate (>50% Diameter Stenosis): - Overall: 15.5% (92 lesions) - Crude Comparison: - > IVUS-guided: 17.4% (32 lesions) - Non-IVUS-guided: 14.6%(60 lesions) (HR p=0.74) - Adjusted Analysis: Restenosis ↓ 49% with IVUS (HR 0.51; p<0.05) after adjusting for lesion complexity and other confounders #### **Secondary Endpoint: TLR** Hazard Ratio - Follow-up Clinical Data: Available for all patients - 12-month TLR rate - Overall: 1.5% (19 lesions) - Crude Comparison: - > IVUS-guided: 2.0% (10 lesions) - Non-IVUS-guided: 1.2%(9 lesions) (HR p<0.05) Note: Higher baseline lesion complexity in IVUS groupAdjusted analysis: IVUS group achieved a comparable TLR rate compared to non-IVUS group *After adjustments for age, sex, lesion type, lesion complexity, LMS, ostial, reference vessel diameter, pre-PCI TIMI flow grade, pre-procedure stenosis diameter, total lesion length, bifurcation, lesion in side branch, DCB predilatation diameter, HbA1c, serum creatinine, documented significant CAD, new onset angina, and previous PCI #### Secondary Endpoint: Healthcare Resource Utilization # Crude rehospitalization 6 5 (gytuou 27) 3 4 4 0.01 (95% CI: -0.029 , 0.049) 0.156 0.146 Adjusted rehospitalization Δ = 0.01 (95% CI: -0.028 , 0.050) *After adjustments for age, BMI, smoking status, lesion type, lesion location, lesion complexity, pre-PCI TIMI flow grade, HbA1c, serum creatinine, LDL level and hypertension # Conclusions IVUS No IVUS ### IVUS guidance improves clinical and procedural outcomes No IVUS **IVUS** - Mechanistic advantages: Enhances vessel sizing, - Reduced restenosis risk - Low event rates of TLR; Comparable rates after adjusting for lesion and baseline characteristics, including lesion complexity lesion preparation, and calcification detection ## Healthcare utilization remains comparable - No increase in HRU in a population with high lesion complexity - By lowering restenosis risk, IVUS may reduce downstream need for repeat revascularization and associated costs #### Value-based adoption of IVUSguided DCB PCI - IVUS shows potential as valuable adjunct to standard practice - Supports value-based adoption: IVUS use in high-risk anatomies may maximize clinical benefit and healthcare system efficiency References: 1. Shi H, et al. Eur Heart J Qual Care Clin Outcomes. 2024; 2. Carvalho PEP, et al. JAMA Cardiol. 2024; 3. Feinberg J, et al. Cochrane Database Syst Rev. 2017;8(8):CD012481; 4. Kinlay S, et al. J Am Heart Assoc. 2023;12(2):e027055; 5. Gomez-Lara J, et al. J Am Heart Assoc. 2021;10(22):e022123; 6. Korjian S, et al. Circ Cardiovasc Interv.2024;17(5):e013302; 7. Muramatsu T, et al. Cardiovasc Interv Ther. 2023;38(2):166-76; **8.** Arslani K, Jeger R. Curr Cardiol Rep. 2021;23(11):173. **Disclosure of Commercial Support and Relevant Financial Interests:** This study was funded by Boston Scientific MTS has received honoraria from Boston Scientific for proctoring in AGENTTM procedures, participation in AGENTTM advisory meetings and AGENTTM educational sessions. IQVIA received funds for this study from Boston Scientific Asia Pacific. No other disclosures were reported.