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Background
	� Literature reviews are a promising area for AI application because of the 

structured tasks that AI is able support with.1, 2

	� While prior studies show promise in AI-assisted data extraction, evidence for 
AI application in quality assessment of economic evaluations remains limited.2

	� Given the critical role of quality assessment in literature reviews, this study 
aimed to evaluate whether carefully engineered prompts can enable GPT-4o 
to assess methodological quality of economic evaluations using the 10-item 
Drummond checklist and compared its performance with human reviewers.3

Methods
	� An overview of the project approach is provided in Figure 1. 

	� All AI quality assessments were conducted using the OpenAI GPT-4o model. 

	� Human data extractions, used as the reference standard, were quality 
checked by a second human reviewer across the development and test 
phases, in alignment with guidance from the University of York’s Centre for 
Reviews and Dissemination.4

Development Phase 
	� Prompts based on the 10-item Drummond checklist were iteratively refined 

using both a context prompt and the full publication text (or abstract if no 
full-text was available) as input.

	� These prompts were applied to a development set of four non-small cell 
lung cancer (NSCLC) economic evaluation articles, including two full-text  
journal articles and two conference abstracts/health technology 
assessment (HTA) reports.

	� After each iteration, F1 scores (harmonic mean of precision and recall; 
range 0–1) were calculated to evaluate AI performance, with refinement 
continuing until the model achieved an F1 score of ≥0.70, with subsequent 
iterations conducted until a lower score than the previous iteration was 
observed, at which point refinement was stopped.

Test Phase 
	� The best-performing prompt was applied to an independent test set of  

five NSCLC articles (three full-text journals and two conference abstracts.

	� F1 scores from AI-generated quality assessments were compared to those 
of human quality assessments of the same articles. 

	� A detailed item-level analysis was conducted to evaluate AI accuracy for 
each question in the Drummond checklist.

Results
	� AI performance improved through prompt refinement and was maintained 

in the test phase, with F1 scores ≥0.70 (Figure 2A).

	� In the development set (n=4), AI F1 scores ranged from 0.77 to 0.84, 
compared to 0.91 for human assessments. 

	� Applying the best performing prompt (prompt 4) to the test set (n=5), AI 
achieved an F1 score of 0.78 versus 0.90 for humans.

	� AI demonstrated relatively stronger performance on full-text journal 
articles, producing results that approached human reviewer accuracy. 
However, it provided less accurate evaluations for conference abstracts and 
HTA reports, a pattern consistent with observations in human assessments 
(Figure 2B and 2C).

	� Analysis of individual Drummond checklist items revealed that AI errors 
were predominantly inaccurate (false positives), where the model fabricated 
outputs that were not present in the articles (AI hallucinations) (Figure 3).

	� Notably, the AI had challenges connecting information spread across  
an article, sometimes overlooking relationships between key details  
and assumptions and missing their full context, which impacted its  
overall assessments.
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Objective
To develop and test Artificial Intelligence (AI) prompts for conducting 
quality assessments of economic evaluations using the 10-item 
Drummond checklist, and to compare the accuracy of AI versus  
human assessments.

Conclusion
The AI model showed promise for conducting quality assessments using 
the 10-item Drummond checklist, particularly when applied to full-text 
journal articles.

However, given the lower F1 scores observed for AI quality assessments 
compared to humans and the persistence of false positives, maintaining 
a human-in-the-loop approach is essential to ensure accuracy. Future 
research should focus on broader validation across multiple disease areas 
and consider evaluating other variants of the Drummond checklist to 
enhance applicability and performance.

FIGURE 1

Summary of Project Approach

Abbreviations: AI: artificial intelligence; HTA: Health Technology Assessment; NSCLC: non-small-cell lung cancer; P: prompt.
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FIGURE 2

Comparison of F1 Scores Between AI and  
Human Assessments

This analysis was conducted on the test set (n=5 articles) assessing each item of the 10-question Drummond Checklist. AI assessments were classified as accurate when the model correctly 
identified information present in the article; assessments were classified as inaccurate when the AI identified information absent from the article (false positives); instances where the AI failed 
to detect information that was present were classified as incomplete (false negatives).

FIGURE 3

Item-Level Analysis of AI Assessment (Test Set, n=5)
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A. Overall

C. Conference Abstracts and HTA Reports

Prompt iterations (P1–P5) were evaluated during the development phase; P4 achieved the 
highest F1 score (Fig. 2A) and was carried forward to the test phase.
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