
Enhancing Causal Discovery in Chronic Diseases: 

The MAGIC Framework Using Multiple LLMs

BACKGROUND

• Understanding causal relationships among chronic diseases is essential 

for identifying associations and minimizing bias

• Traditionally, directed acyclic graphs (DAGs) have relied on expert 

knowledge and literature review, limiting scalability and introducing 

potential bias

• With the recent advance of large language models (LLMs), it is now 

possible to explore knowledge-informed DAG construction

• MAGIC demonstrates the potential of LLM-guided, feedback-enhanced causal discovery for scalable 

and reliable causal graph construction.

• By integrating real-world data, clinical context, and multi-model consensus, this approach offers a 

reproducible and interpretable framework for complex chronic disease research and supports broader 

applications in healthcare and epidemiology.
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1 0.966 0.560 0.709 0.759 0.440 0.557 29

2 0.939 0.620 0.747 0.727 0.480 0.578 28

3 0.941 0.640 0.762 0.735 0.500 0.595 27

4 0.941 0.640 0.762 0.735 0.500 0.595 27

5 0.941 0.640 0.762 0.735 0.500 0.595 27
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PC 0.875 0.420 0.568 0.391 0.180 0.247 44

GES 0.826 0.380 0.521 0.278 0.100 0.147 49

LiNGAM 0.905 0.380 0.535 0.571 0.240 0.338 40

LLM_Pairwise 0.963 0.520 0.675 0.778 0.420 0.546 30

LLM_BFS 0.867 0.260 0.400 0.467 0.140 0.215 45

MAGIC (Ours) 0.941 0.640 0.762 0.735 0.500 0.595 27

OBJECTIVES

• To evaluate the feasibility of LLM-based approaches

• To propose MAGIC (Multi-LLM Assisted Graph Inference and 

Correction) that integrates statistical, clinical, and language-based 

feedback to improve DAG generation

MAGIC FRAMEWORK

Iteratively refines the causal graph through correction and validation

1. Correction Prompt Generation

• Combine current graph structure with statistical metrics (phi, BDeu, 

disease duration using individual data from the Korea National Health 

and Nutrition Examination Survey) and clinical knowledge (via RAG)

• Formulate prompts to guide LLM reasoning

2. Graph Correction by Multiple LLMs

• Use 5 LLM models (GPT-4o, Claude 3.5 Sonnet, Gemini-2-Flash, 

DeepSeek R1, Llama 3.3 70B)

• Each model suggests edge modifications (add, remove, reverse)

• Consensus-based voting aggregates proposals

Voting Results

METHODS

Two-part study: reference DAG development and comparative performance

evaluation of causal discovery methods

Dataset

• Source: Korea National Health and Nutrition Examination Survey

• Sample size: 36,107 participants

• Variables: 13 chronic diseases

• Evaluation metrics

• Skeleton accuracy: evaluate presence of edges (ignoring direction)

• Orientation accuracy: evaluate correctness of edge directions

• Structural Hamming Distance (SHD): minimum number of edge changes

to match ground truth

Reference DAG: constructed through literature review of 138 peer-reviewed

publications and expert consensus

(b) MAGIC Output DAG

(a) Reference DAG

RESULTS
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Figure 1. Overview of the MAGIC framework

• After five rounds of expert review and discussion, MAGIC was deemed clinically plausible and 

methodologically robust.

• MAGIC achieved the best overall performance with skeleton precision 0.941, recall 0.640, F1 score 

0.762; orientation precision 0.735, recall 0.500, F1-score 0.595; SHD 27 after the third iteration.

• Performance converged at the third iteration, indicating stable final results.

Figure 2. DAG Comparison: Reference vs MAGIC

Table 1. Performance comparison of causal discovery methods

Table 2. MAGIC performance evolution across five self-correction iterations
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