Enhancing Causal Discovery in Chronic Diseases: The MAGIC Framework Using Multiple LLMs

Jihee Kim^{1†}, Minseol Jang^{2, 3†}, Miryoung Kim^{4, 5}, Hyun Jin Han⁶, Kangjun Noh¹, Sumin Park¹, Kyungwoo Song^{1, 7*}, Hae Sun Suh^{2, 3, 5*}.

1 Department of Statistics and Data Science, Yonsei University, Seoul, Republic of Korea

- 2 Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- 3 Institute of Regulatory Innovation through Science (IRIS), Kyung Hee University, Seoul, Republic of Korea
- 4 College of Pharmacy, Sunchon National University, Suncheon, Republic of Korea
- 5 College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- 6 Vista Health Korea Ltd. Seoul, Republic of Korea
- 7 Department of Applied Statistics, Department of Statistics and Data Science, Yonsei University, Seoul, Republic of Korea

- * Corresponding author
- † These authors contributed equally to this work

BACKGROUND

- Understanding causal relationships among chronic diseases is essential for identifying associations and minimizing bias
- Traditionally, directed acyclic graphs (DAGs) have relied on expert knowledge and literature review, limiting scalability and introducing potential bias
- With the recent advance of large language models (LLMs), it is now possible to explore knowledge-informed DAG construction

OBJECTIVES

- To evaluate the feasibility of LLM-based approaches
- To propose MAGIC (Multi-LLM Assisted Graph Inference and Correction) that integrates statistical, clinical, and language-based feedback to improve DAG generation

METHODS

Two-part study: reference DAG development and comparative performance evaluation of causal discovery methods

Dataset

- Source: Korea National Health and Nutrition Examination Survey
- Sample size: 36,107 participants
- Variables: 13 chronic diseases
- Evaluation metrics
 - Skeleton accuracy: evaluate presence of edges (ignoring direction)
 - Orientation accuracy: evaluate correctness of edge directions
 - Structural Hamming Distance (SHD): minimum number of edge changes to match ground truth

Reference DAG: constructed through literature review of 138 peer-reviewed publications and expert consensus

MAGIC FRAMEWORK

Iteratively refines the causal graph through correction and validation

1. Correction Prompt Generation

- Combine current graph structure with statistical metrics (phi, BDeu, disease duration using individual data from the Korea National Health and Nutrition Examination Survey) and clinical knowledge (via RAG)
- Formulate prompts to guide LLM reasoning

2. Graph Correction by Multiple LLMs

- Use 5 LLM models (GPT-4o, Claude 3.5 Sonnet, Gemini-2-Flash, DeepSeek R1, Llama 3.3 70B)
- Each model suggests edge modifications (add, remove, reverse)
- Consensus-based voting aggregates proposals

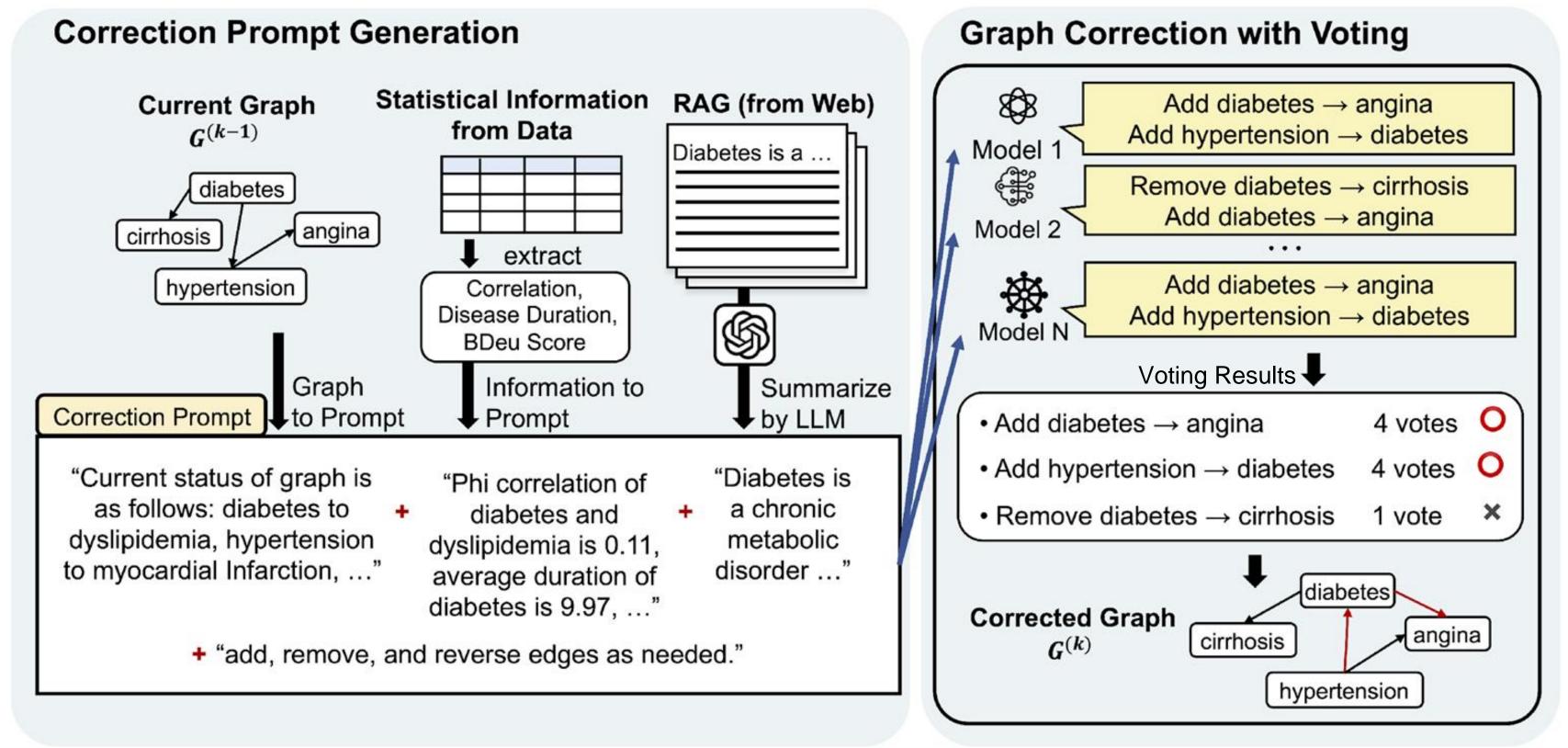


Figure 1. Overview of the MAGIC framework

RESULTS

- After five rounds of expert review and discussion, MAGIC was deemed clinically plausible and methodologically robust.
- MAGIC achieved the best overall performance with skeleton precision 0.941, recall 0.640, F1 score 0.762; orientation precision 0.735, recall 0.500, F1-score 0.595; SHD 27 after the third iteration.
- Performance converged at the third iteration, indicating stable final results.

Table 1. Performance comparison of causal discovery methods

Table 1. Performance comparison of causal discovery methods									
Model	Skeleton Precision (%)	Skeleton Recall (%)	Skeleton F1 Score (%)	Orientation Precision (%)	Orientation Recall (%)	Orientation F1 Score (%)	SHD		
PC	0.875	0.420	0.568	0.391	0.180	0.247	44		
GES	0.826	0.380	0.521	0.278	0.100	0.147	49		
LiNGAM	0.905	0.380	0.535	0.571	0.240	0.338	40		
LLM_Pairwise	0.963	0.520	<u>0.675</u>	0.778	0.420	0.546	<u>30</u>		
LLM_BFS	0.867	0.260	0.400	0.467	0.140	0.215	45		
MAGIC (Ours)	0.941	0.640	0.762	0.735	0.500	0.595	27		

Table 2. MAGIC performance evolution across five self-correction iterations

Iteration	Skeleton Precision (%)	Skeleton Recall (%)	Skeleton F1 Score (%)	Orientation Precision (%)	Orientation Recall (%)	Orientation F1 Score (%)	SHD
2	0.939	0.620	0.747	0.727	0.480	0.578	28
3	0.941	0.640	0.762	<u>0.735</u>	0.500	0.595	27
4	0.941	0.640	0.762	<u>0.735</u>	0.500	0.595	27
5	0.941	0.640	0.762	<u>0.735</u>	0.500	0.595	27

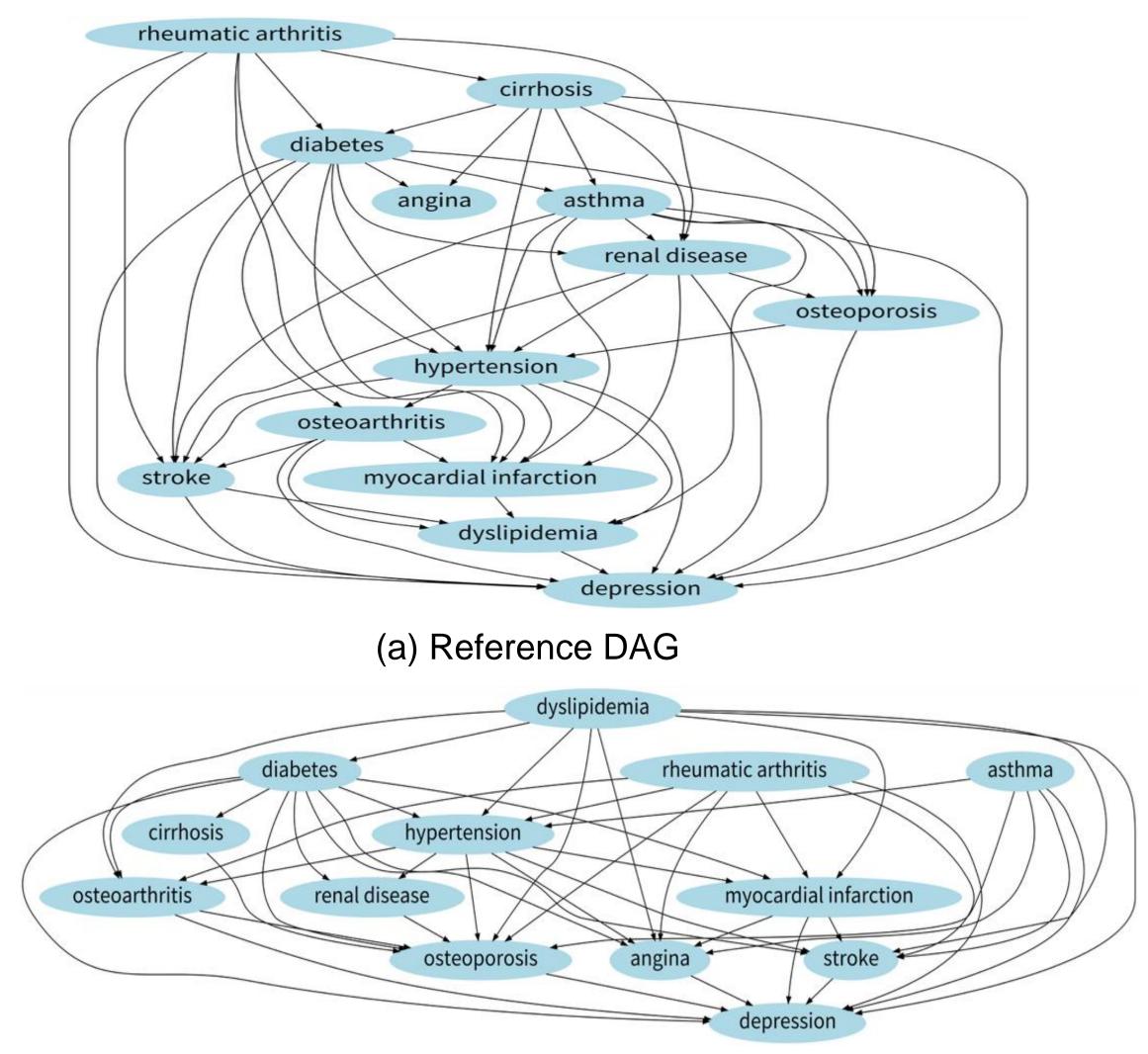


Figure 2. DAG Comparison: Reference vs MAGIC

(b) MAGIC Output DAG

CONCLUSIONS

- MAGIC demonstrates the potential of LLM-guided, feedback-enhanced causal discovery for scalable and reliable causal graph construction.
- By integrating real-world data, clinical context, and multi-model consensus, this approach offers a reproducible and interpretable framework for complex chronic disease research and supports broader applications in healthcare and epidemiology.

ACKNOWLEDGMENT

This research was supported by a grant(RS-2024-00331719, 21153MFDS601) from Ministry of Food and Drug Safety in 2025.