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INTRODUCTION  The use of “infectious units” allows for incorporation of fluctuating probabilities RESULTS
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e Dynamic transmission models capture both direct and indirect effects dynamic model e A cycle length of 2 months and a lag time of 2 months (1 cycle) are considered the optimal combination. Model comparison results are produced using this combination in
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of vaccination; however, they can be complex and computationally . Combining every option for each of the 3 drivers (Figure 1) resulted in the dyna-static mode
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| 9 | o 12 scenarios with varying magnitudes of indirect effects (Figure 2) For Ipoth outcomes of symptom_atlc {Flgures 4 and 6) and hospitalized (Figures 5 and 7) infections, the dyna-static model produces similar results to the dynamic model
e Static models are easier to use, but do not capture indirect effects and and in both types of dengue epidemiology
may underestimate vaccine benefit FIGURE 2: MAGNITUDE OF INDIRECT EFFECTS FOR EACH OF THE 12 SCENARIOS e The magnitude of the dyna-static model’s deviations is generally associated with the expected level of indirect effects
* A static model with a dynamic component (dyna-static model) was e The dyna-static model produces similar results to the dynamic model in both types of dengue epidemiology for time frames longer than ~5-8 years (Figures 4, 5, 6, and 7)
dev_eloped to approximate the dynam_lc mc_>de|, and used to model Indirect Effects
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contributions to transmission (Figure 1 and Supplementary Material) MODEL COMPARISON
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RX, routine vaccination at X years old; RX+5CU, routine vaccination with 5 years of catch-up; RX+10CU, routine vaccination with 10 years . . . . ’ The Optlmal Combination Of CyCle length and lag * The dyna-StatiC mOdel,S Valldlty was teSted in 2 diStinCt dengue_endemic
oifhcatch;juri); VEi, (\;accine efficacy.h f e . Cather thon e Eleven combinations of cycle length and lag time were tested across 12 scenarios time was determined by testing all time horizons countries across scenarios with different levels of indirect effects; in both
aThe model includes an option where symptomatic infections in vaccinated individuals are complete revented (rather than becomin n . . . . . . . . .
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e At each cycle, the number of infectious units is calculated and assgssed outcomes (symptomatic cases, hospitalized cases, and deaths) and for specific time frame (short, medium, or long) and Ioriger); Iong—tgrm_vali_dity Is key when considering infectious disease
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