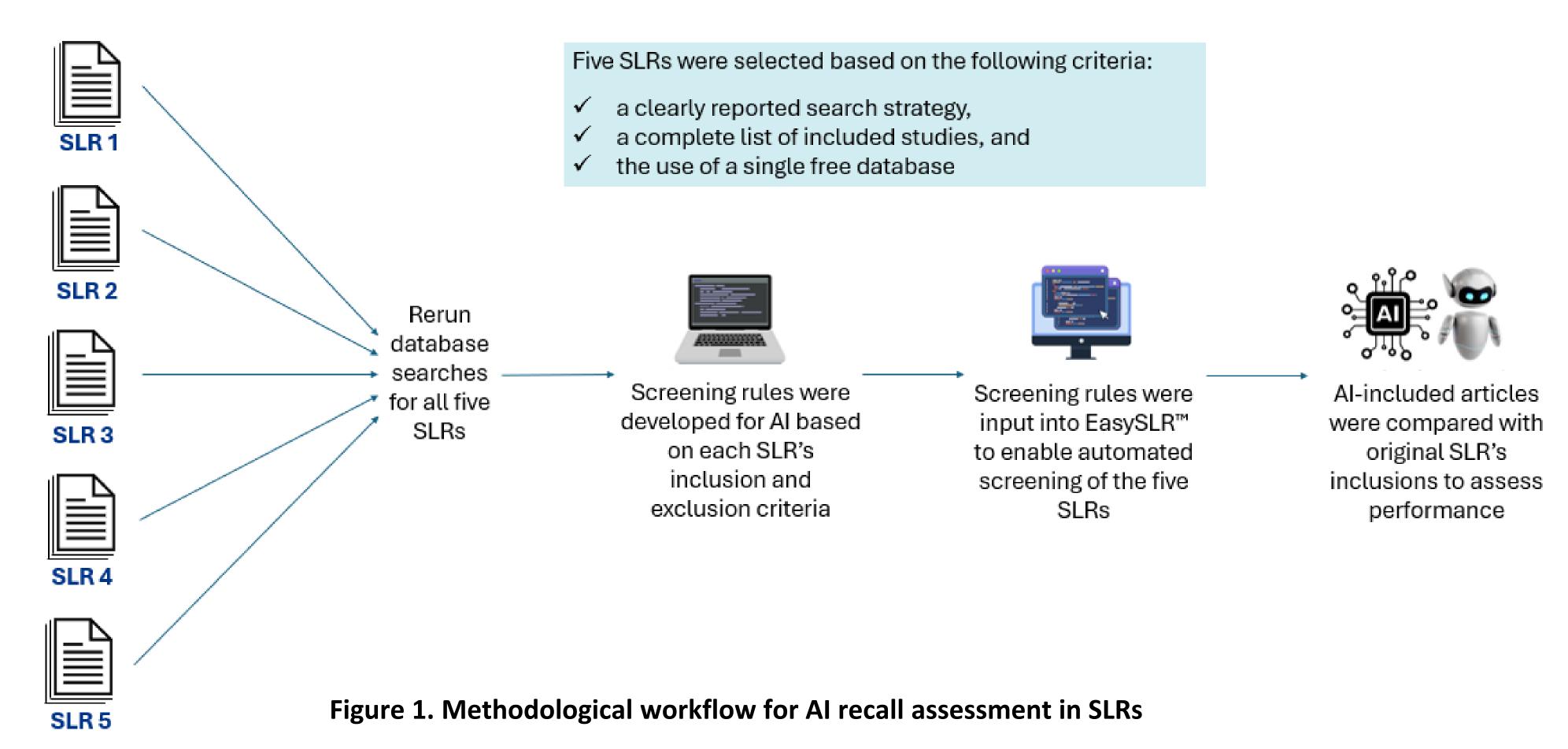
Assessing the Recall of Artificial Intelligence in Conducting Systematic Literature Reviews

Aastha Radotra, MPH¹, Geetank Kamboj, M.Pharm.¹, Surabhi Aggarwal, M.Pharm.¹, **Hemant Rathi, MSc^{1,2}**


¹Skyward Analytics, Gurugram, India, ²EasySLR, Gurugram, India

INTRODUCTION

- Systematic literature reviews (SLRs) are **time-consuming** and **resource-intensive**, requiring substantial effort across multiple stages mainly screening and data extraction
- Completing an SLR typically takes over 15 months, placing significant burden on researchers¹
- To address these challenges, artificial intelligence (AI) tools have been developed to accelerate the screening process and reduce the overall workload 1-2
- The objective of this study was to evaluate the screening recall of AI in replicating the study selection of previously published SLRs

METHODS

- We conducted an exploratory analysis to evaluate the recall of Al-assisted SLRs using the EasySLR $^{\text{TM}}$ platform (Figure 1)
- Published SLRs were selected based on the following inclusion criteria: (1) presence of a clearly defined search strategy, (2) availability of a complete list of included studies, and (3) use of a single freely accessible database for literature retrieval
- A total of five eligible SLRs were identified for the evaluation: Kaegi et al., 2022³, Sharifian-Dorche et al., 2021⁴, Nicholas et al., 2020⁵, Kaegi et al., 2020⁶, and Bruurs et al., 2013⁷
- The original PubMed search strategies from these SLRs were replicated to obtain the respective citation sets
- Retrieved citations were then cross-referenced against the list of studies included in each original SLR
- Inclusion and exclusion criteria were extracted from the selected SLRs to construct study-specific screening rules
- These screening rules were fed into EasySLR[™] to facilitate Al-assisted screening for each of the five included SLRs
- Recall was calculated as the proportion of human-included studies correctly included by AI

RESULTS

- The characteristics of the five included SLRs, including population, intervention, outcomes, and study design, are summarised in **Table 1**
- Al demonstrated high recall across the five evaluated SLRs, varying from 73% to 100% (Figure 2)
- o 100% recall was observed for Kaegi et al., 2020 where perfect concordance with the originally included studies was observed
- O High recall was observed for Bruurs et al., 2013 (90%) and Nicholas et al., 2020 (84%)
- O Moderate recall were recorded for Kaegi et al., 2022 (74%) and Sharifian-Dorche et al., 2021 (73%)
- Replicated search hits and AI-included studies were largely consistent with the original SLRs and human reviewer selections (Table 2)
- The observed variation in AI performance may be due to the complexity of research questions and the variation between context-driven decisions made by human reviewers in the original SLRs and the standardized screening rules applied during this analysis

Table 1. Study characteristics of included SLRs presented using the PICOS framework

Systematic review	Population (P)	Intervention (I) vs. Comparators (C)	Outcomes (O)	Study Design (S)
Kaegi et al., 2022 ³	Patients with immune-mediated diseases (e.g., MS, RA, SLE)	CD20-targeting mAbs vs. placebo/standard care	Safety, efficacy	RCTs, case series, and open-label studies
Sharifian-Dorche et al., 2021 ⁴	Patients with MS or NMOSD on DMDs	Various DMDs vs. no treatment or other therapies	COVID-19 risk, severity, mortality	Observational studies, case series and reports
Nicholas et al., 2020 ⁵	Patients with MS on oral DMDs	Oral DMDs	Adherence, discontinuation	Observational studies
Kaegi et al., 2020 ⁶	Patients with immune-mediated diseases (e.g., MS, RA, SLE)	Atacicept vs. placebo, conventional treatment, or other biologics	Safety, efficacy	RCTs
Bruurs et al., 2013 ⁷	Patients with asthma	Physiotherapy vs. control	QoL, symptom reduction, cardiopulmonary fitness	RCTs

MSR111

Figure 2. Screening recall of AI across published SLRs

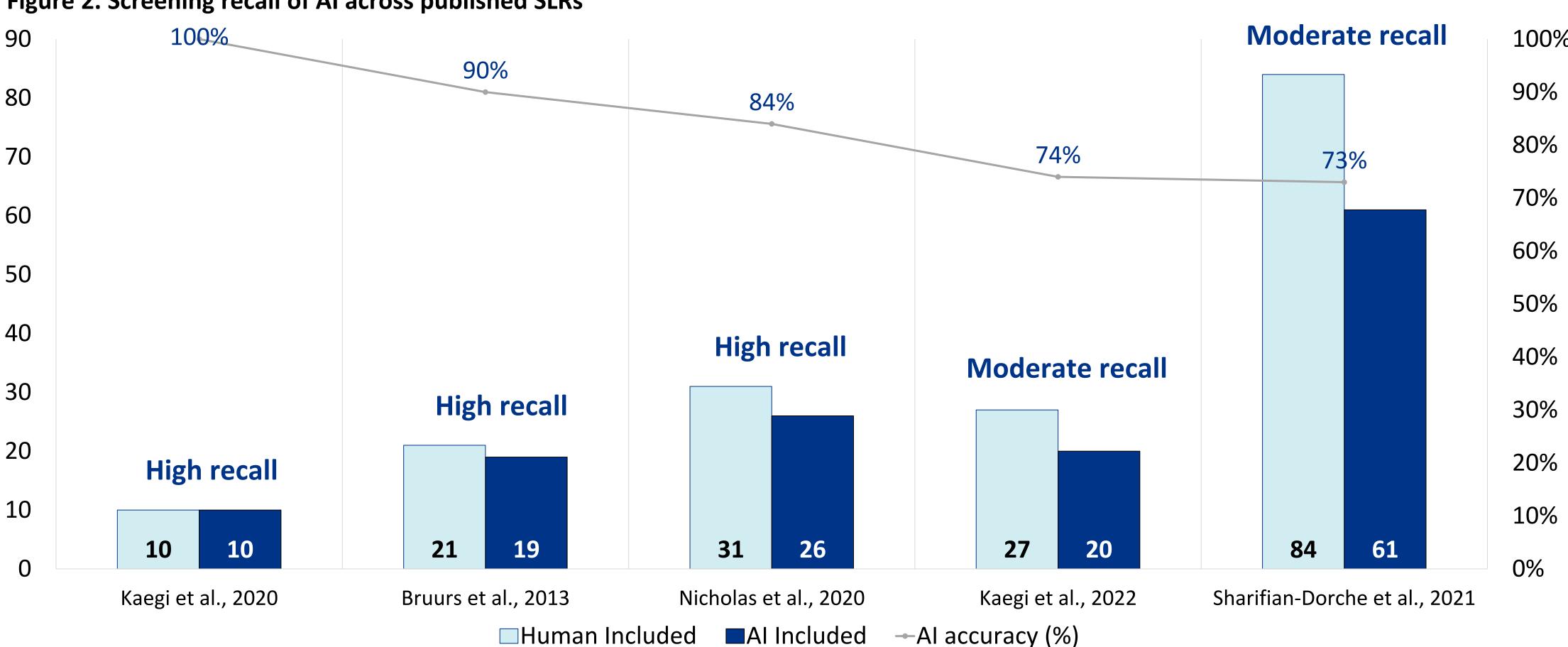


Table 2. Search output and study inclusion: AI versus human screening across published SLRs

•	•		•		
Systematic review	Database Searched	Original Search Hits	Human Included Studies, Final Report	Replicated Search Hits*	Studies Included by AI**
Kaegi et al., 2022 ³	PubMed	2,220	27	3,182	20
Sharifian-Dorche et al., 2021 ⁴	PubMed	262	84	278	61
Nicholas et al., 2020 ⁵	PubMed	510	31	657	26
Kaegi et al., 2020 ⁶	PubMed	118	10	166	10
Bruurs et al., 2013 ⁷	PubMed	237	21	517	19

^{*}Replicated search hits are higher than the original, despite using the same year limits, as the search was re-run post-publication—potentially capturing articles retrospectively indexed, newly reclassified, or added through

CONCLUSION

- EasySLR[™] demonstrated high recall in screening across multiple SLRs, indicating its potential to streamline evidence synthesis workflows
- A key limitation of our approach is that screening decisions often involve **subjective judgment** beyond the protocol, which cannot be fully captured by predefined rules and may therefore limit AI performance. An additional limitation was that we did not attempt to contact the authors of the original SLRs to explore around this aspect
- However, observed variability in recall highlights the importance of maintaining human oversight

FUNDING: No funding was received for the conduct of this study.

Poster presented at ISPOR 2025, Montreal, QC, Canada (Wednesday, May 15th, 2025)

routine database updates and corrections.

**Studies included by AI represent the number of correctly identified studies from the original human-included set, not the total number of AI inclusions.