Evaluating the cost-effectiveness of wastewater-based disease surveillance

Karina Wallrafen-Sam¹, Nicole Zacharias², Raquel Rubio Acero³, Andreas Walker⁴, Marcus Lukas⁵, Beate Schneider⁵, Sophia Beyer⁶, Timo Greiner⁶, Jakob Schumacher⁶, and Jan Hasenauer^{1,7}

¹ University of Bonn, Bonn, Germany | ² University Hospital Bonn, Germany | ³ LMU University Hospital, Munich, Germany | ⁴ University Hospital Düsseldorf, Düsseldorf, Germany ⁵ German Environment Agency, Berlin, Germany | ⁶ Robert Koch Institute, Berlin, Germany | ⁷ Helmholtz Center Munich, Neuherberg, Germany

I. BACKGROUND

- Interest in wastewater-based surveillance has grown since COVID due to advantages w.r.t. underreporting and scaleability
- A comprehensive cost overview is lacking
- The context-specific cost-effectiveness of different surveillance strategies is unknown
- We investigate wastewater surveillance running costs at 4 laboratories across Germany:
 - Bonn
- Düsseldorf
- Munich
- Berlin
- Then we couple our cost data with different effectiveness measures to compare wastewater vs. individual tests

II. DATA

- Investments in automatic extraction equipment are quickly offset by efficiency gains
- Surveilling multiple targets at once exploits economies of scale
- Costs vary widely based on PCR technology, sample transport approach,

Figure 1: Total costs of wastewater sampling and analysis at 4 laboratories by the number of samples analysed per batch and the number of batches (with manual or automatic extraction)

III. COST-EFFECTIVENESS AT THE CITY LEVEL

METHODS

- Scenario: An emerging infectious disease spreads among 10'000 persons (1 catchment area)
- Goal: reconstruct true case curve using 1 year of active surveillance data
- Approach 1: Test wastewater every X days
 - Map concentrations to prevalence estimates (McMahan et al., 2021) & interpolate
- Approach 2: Individually test N random persons per day
 - 99% / 80% Se and €43.74 / €12.00 cost (Diel et al., 2022)

Figure 2: The true number of prevalent cases of a COVID-like illness in an example population

RESULTS

Wastewater surveillance can achieve similar accuracy at a significantly lower cost than individual testing

Figure 3: The lock-step Euclidean Distance between the true and reconstructed prevalence curves (in red) and the total cost for various surveillance approaches

Antigen Tests Per Day

A B C D E F G H I J K L M

Testing Scenario

METHODS

- Agent-based, network-based model of a nursing home using EpiModel (Jenness et al., 2018):
- 150 residents + 150 staff (closed population)
- 4 contact network layers
- COVID-like illness introduced via outside visitors
- Frequent asymptomatic infections
- Co-circulating generic cold/flu
- No vaccinations; waning natural immunity
- 1-year simulation period
- Isolation of detected cases
- Model used to compare testing strategies:
- For symptomatic cases: Daily PCR testing
- For others:
- Daily PCR testing OR
- Daily antigen testing + PCR follow-up OR
- Wastewater testing + PCR follow-up

IV. COST-EFFECTIVENESS IN A HIGH-RISK SETTING

Neither the wastewater- nor the individual testing-based approach consistently outperforms the other Median Cost per Infection Averted Optimal Strategy by Transmission Scenario and WTP A. Sym Only B. 1% Gen PCR C. 5% Gen PCR D. 10% Gen PCR Cost (€) E. 1% Ant w/ 100% Gen PCR 4000 F. 5% Ant w/ 100% Gen PCR 3000 G. 10% Ant w/ 100% Gen PCR 2000 H. 7-Dav WW w/ 10% Gen PCR I. 7-Day WW w/ 50% Gen PCR J. 7-Day WW w/ 100% Gen PCR K. 3-Day WW w/ 10% Gen PCR L. 3-Day WW w/ 50% Gen PCR M. 3-Day WW w/ 100% Gen PCR 108

RESULTS

Figure 4: The median surveillance cost per infection averted by transmission and testing scenario (left); the strategy with the lowest number of median infections by transmission scenario and willingness-to-pay for surveillance per infection averted (right)

500€

WTP per Infection Averted

4000€

V. CONCLUSIONS

- Wastewater-based surveillance has clear costrelated advantages over active individual testingbased surveillance in larger, heterogeneous populations
- **Modelling** can guide public health officials in choosing a suitable surveillance approach for a given context

REFERENCES

- Diel R, Nienhaus A. Point-of-care COVID-19 antigen testing in German emergency rooms - a cost-benefit analysis. Pulmonology. 2022;28(3):164-172.
- Jenness SM, Goodreau SM, Morris M. EpiModel: An R Package for Mathematical Modeling of Infectious Disease over Networks. J Stat Softw. 2018;84:8.
- McMahan CS, Self S, Rennert L, Kalbaugh C, Kriebel D, Graves D, Colby C, Deaver JA, Popat SC, Karanfil T, Freedman DL. COVID-19 wastewater epidemiology: a model to estimate infected populations. Lancet Planet Health. 2021;5(12):e874-e881.