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• Health economic modeling plays a critical role in 
evidence generation for healthcare decision-making.

• Generative AI has the potential to accelerate model 
development, reduce manual effort, and increase 
reproducibility.

• However, the feasibility of using AI to replicate 
published health economic models remains 
underexplored.
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OBJECTIVE

KEY FINDINGS
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 This study highlights the potential and current 
limitations of Generative AI to replicate a complex 
HTA-ready cost-effectiveness model based on a 
publication and a technical report—a model that 
captures the multifaceted nature of ulcerative 
colitis, including treatment sequencing. 

 Generative AI shows strong potential to 
replicate health economic models when 
supported by detailed and standardized 
documentation, with its performance closely tied 
to the transparency and clarity of input definitions 
and model assumptions

 Improving standardized reporting practices 
within the HEOR field is needed to enable 
Generative AI to better support stakeholders during 
HTA processes.
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We evaluated the performance of Generative AI in 
replicating key health economic model components from 
the publication and the technical report across five core 
modeling domains: health states, transition probabilities, 
costs, utilities, and treatment pathways. 
1. Health States
Key finding: Generative AI performed better in identifying 
health states when parsing the technical report, 
especially for capturing surgery-related and death states, 
but continued to hallucinate or misclassify some non-
existent states due to ambiguous phrasing and 
insufficient descriptions in both the publication and 
technical report document.  (Table 1)

2. Transition Probabilities
Key finding: Transition probabilities were partially 
captured in both sources, but time horizon recognition 
was consistently flawed—LLMs interpreted annual 
probabilities as single-cycle (biweekly) values and failed 
to derive transitions to death or interpret hazard ratios 
correctly. (Table 2)

Table 2: Comparison of LLM performance for the publication vs 
the technical report on transition probabilities
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3. Costs
Key finding: Generative AI correctly extracted health state 
costs when explicitly stated, particularly surgery costs in 
the technical report, but failed to identify AE, drug, or 
administration costs due to lack of structured formatting 
or implied logic. (Table 3)

Table 3: Comparison of LLM performance for the publication vs 
the technical report on costs
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4. Quality of Life (Utility) Inputs
Key finding: Utility values linked to explicitly labeled 
health states were accurately captured across both 
sources; however, LLMs also assigned utilities to 
hallucinated states, showing limitations in filtering out 
non-existent concepts. (Table 4)

Table 4: Comparison of LLM performance for the publication vs 
the technical report on utilities
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5. Treatment Lines
Key finding: Generative AI was unable to recognize 
treatment sequences or transitions between therapy 
lines in either source, primarily due to the absence of 
structured or standardized pathway definitions within 
the source documents. (Table 5)

Table 5: Comparison of LLM performance for the publication vs 
the technical report on treatment lines
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• To evaluate the feasibility and accuracy of Generative 
AI in replicating a published health economic model 
for ulcerative colitis as described in text, i.e., without 
access to the actual model.

• To assess AI performance across different levels of source 
detail (publication vs. a detailed technical report).

• Extracted model structures, health states, transition 
probabilities, costs, and utilities.

• Reconstructed the model using R's heemod 
package.

Experiment 2: Technical Report-Based Replication
• Applied the same extraction pipeline to a more 

detailed technical report version of the model.
• Compared AI outputs across both iterations.

Evaluation Criteria
• Accuracy in identifying:
o Health states
o Transition probabilities
o Costs
o Utilities
o Treatment lines

Figure 1: Schematic of the original model structure as published by Salcedo et al. 1

1. Salcedo, Jonathan, Daniel Hill-McManus, Chloë Hardern, Oyin Opeifa, 
Raffaella Viti, Ludovica Siviero, Antonio Saverio Roscini, and Gennaro Di 
Martino. "Cost-Effectiveness of Vedolizumab as a First-Line Advanced 
Therapy Versus Adalimumab Treatment Sequences for Ulcerative Colitis 
in Italy." PharmacoEconomics-Open 8, no. 5 (2024): 701-714.

2. ValueGen.AI, https://valuegen.ai/

3. LangChain, 
https://python.langchain.com/docs/how_to/qa_citations/?form=MG0AV
3

4. CrewAI, https://github.com/crewAIInc/crewAI?form=MG0AV3

5. OpenAI, https://github.com/openai/openai-dotnet?form=MG0AV3

Funding: This study was funded by Takeda Pharmaceuticals U.S.A., Inc
Disclosure: Jakob Langer and Ipek Ozer Stillman are employees of Takeda and own company stock.

Table 1: Comparison of Large Language Model (LLM) performance 
for the publication vs the technical report on health states
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METHODS

Model Selection
Target: Markov model with a treatment sequence for 
ulcerative colitis published by Salcedo et al.1

Replication Experiments
Experiment 1: Publication-Based Replication
• Used ValueGen.AI2, a GPT-4-based platform integrating 

LangChain3, CrewAI4, and OpenAI5 libraries.
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