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Table 4: Comparison of LLM performance for the publication vs
the technical report on utilities

KEY FINDINGS

O This study highlights the potential and current
limitations of Generative Al to replicate a complex
HTA-ready cost-effectiveness model based on a
publication and a technical report—a model that
captures the multifaceted nature of ulcerative
colitis, including treatment sequencing.

O Generative Al shows strong potential to

replicate health economic models when
supported by detailed and standardized
documentation, with its performance closely tied
to the transparency and clarity of input definitions
and model assumptions

o Improving standardized reporting practices
within the HEOR field is needed to enable
Generative Al to better support stakeholders during
HTA processes.

BACKGROUND

* Health economic modeling plays a critical role in
evidence generation for healthcare decision-making.
Generative Al has the potential to accelerate model
development, reduce manual effort, and increase
reproducibility.

However, the feasibility of using Al to replicate
published health economic models remains
underexplored. 1

OBJECTIVE

To evaluate the feasibility and accuracy of Generative
Alin replicating a published health economic model
for ulcerative colitis as described in text, i.e., without
access to the actual model.

To assess Al performance across different levels of source
detail (publication vs. a detailed technical report). 1

METHODS

Model Selection

Target: Markov model with a treatment sequence for

ulcerative colitis published by Salcedo et al.!

Replication Experiments

Experiment 1: Publication-Based Replication

* Used ValueGen.Al?, a GPT-4-based platform integrating
LangChain3, CrewAl4, and OpenAl® libraries. 2
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* Extracted model structures, health states, transition

probabilities, costs, and utilities.

* Reconstructed the model using R's heemod
package.

Experiment 2: Technical Report-Based Replication

* Applied the same extraction pipeline to a more
detailed technical report version of the model.

* Compared Al outputs across both iterations.

Figure 1: Schematic of the original model structure as published by Salcedo et al. '
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Evaluation Criteria
* Accuracy in identifying:
o Health states
o Transition probabilities
o Costs
o Utilities
o Treatment lines
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We evaluated the performance of Generative Al in
replicating key health economic model components from
the publication and the technical report across five core
modeling domains: health states, transition probabilities,
costs, utilities, and treatment pathways.
1. Health States
Key finding: Generative Al performed better in identifying
health states when parsing the technical report,
especially for capturing surgery-related and death states,
but continued to hallucinate or misclassify some non-
existent states due to ambiguous phrasing and
insufficient descriptions in both the publication and
technical report document. (Table 1)
Table 1: Comparison of Large Language Model (LLM) performance
for the publication vs the technical report on health states
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2. Transition Probabilities

Key finding: Transition probabilities were partially
captured in both sources, but time horizon recognition
was consistently flawed—LLMs interpreted annual
probabilities as single-cycle (biweekly) values and failed
to derive transitions to death or interpret hazard ratios
correctly. (Table 2)

Table 2: Comparison of LLM performance for the publication vs
the technical report on transition probabilities
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3. Costs

Key finding: Generative Al correctly extracted health state
costs when explicitly stated, particularly surgery costsin
the technical report, but failed to identify AE, drug, or
administration costs due to lack of structured formatting
orimplied logic. (Table 3)

Table 3: Comparison of LLM performance for the publication vs
the technical report on costs
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4. Quality of Life (Utility) Inputs

Key finding: Utility values linked to explicitly labeled
health states were accurately captured across both
sources; however, LLMs also assigned utilities to
hallucinated states, showing limitations in filtering out
non-existent concepts. (Table 4)
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5. Treatment Lines

Key finding: Generative Al was unable to recognize
treatment sequences or transitions between therapy
lines in either source, primarily due to the absence of
structured or standardized pathway definitions within
the source documents. (Table 5)

Table 5: Comparison of LLM performance for the publication vs
the technical report on treatment lines
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