Evaluating Generative AI in Replicating Health Economic Models: A Case Study on Ulcerative Colitis **MSR30** Sumeyye Samur¹, Jakob Langer², Emir Gursel¹, I. Fatih Yildirim¹, Turgay Ayer^{1,3}, Jagpreet Chhatwal^{1,4}, Ipek Ozer Stillman⁵ 1 Value Analytics Labs, Boston, MA, USA; 2 Takeda Pharmaceuticals International AG, Zurich, Switzerland; 3 Georgia Institute of Technology, Atlanta, GA, USA; 4 Massachusetts General Hospital Institute for Technology Assessment, Harvard Medical School, Boston, MA, USA; 5 Takeda Pharmaceuticals U.S.A., Inc., Boston, MA, USA · Accuracy in identifying: Transition probabilities **Evaluation Criteria** Health states Treatment lines o Costs o Utilities # **KEY FINDINGS** This study highlights the potential and current limitations of Generative AI to replicate a complex HTA-ready cost-effectiveness model based on a publication and a technical report—a model that captures the multifaceted nature of ulcerative colitis, including treatment sequencing. Generative AI shows strong potential to replicate health economic models when supported by detailed and standardized documentation, with its performance closely tied to the transparency and clarity of input definitions and model assumptions Improving standardized reporting practices within the HEOR field is needed to enable Generative AI to better support stakeholders during HTA processes. # BACKGROUND - · Health economic modeling plays a critical role in evidence generation for healthcare decision-making. - · Generative AI has the potential to accelerate model development, reduce manual effort, and increase reproducibility. - However, the feasibility of using AI to replicate published health economic models remains underexplored. # **OBJECTIVE** - To evaluate the feasibility and accuracy of Generative Al in replicating a published health economic model for ulcerative colitis as described in text, i.e., without access to the actual model. - · To assess AI performance across different levels of source detail (publication vs. a detailed technical report). ## **METHODS** ## Model Selection Target: Markov model with a treatment sequence for ulcerative colitis published by Salcedo et al.1 #### Replication Experiments ### Experiment 1: Publication-Based Replication Used ValueGen.Al², a GPT-4-based platform integrating LangChain³, CrewAl⁴, and OpenAl⁵ libraries. - · Extracted model structures, health states, transition probabilities, costs, and utilities. - · Reconstructed the model using R's heemod ## Experiment 2: Technical Report-Based Replication - · Applied the same extraction pipeline to a more detailed technical report version of the model. - · Compared Al outputs across both iterations. Figure 1: Schematic of the original model structure as published by Salcedo et al. 1 # RESULTS We evaluated the performance of Generative AI in replicating key health economic model components from the publication and the technical report across five core modeling domains: health states, transition probabilities, costs, utilities, and treatment pathways. ## 1. Health States Key finding: Generative AI performed better in identifying health states when parsing the technical report, especially for capturing surgery-related and death states, but continued to hallucinate or misclassify some nonexistent states due to ambiguous phrasing and insufficient descriptions in both the publication and technical report document. (Table 1) Table 1: Comparison of Large Language Model (LLM) performance | tor the publication vs the technical report on health states | | | | |--|---------------------------------------|---|--| | Health
State | Pub. | Technical
Report | Explanation | | Active
Ulcerative
Colitis | ✓ | Linked to
an existing
state | Clearly labeled in publication,
implicit description in the
technical report | | Induction
phase | (misaligned
w/ treatment
lines) | √ (present,
therapy
linkage
unclear) | Descriptions were vague or
embedded in narrative, not
distinctly linked to treatment
phases | | Response
w/
remission | ✓ | ✓ | Clearly labeled in text, allowing
LLMs to extract | | Response
w/o
remission | ✓ | ✓ | Clearly labeled in text, allowing
LLMs to extract | |--|---|---|--| | Maint.
phase | X Falsely
introduced | !! Linked to
an existing
state | Term "maintenance" mentioned
narratively, misinterpreted as a
separate health state or linked
to existing health states | | Discon-
tinuation | X Falsely
introduced | √ N/A | Word "discontinue" used in
patient pathways but not as a
state; LLM misclassified | | Death | X Not
captured | ✓ Captured
but not
used in
transitions | Not visually modeled in
diagrams; implied in text, so
harder for LLM to recognize | | Surgery-
related
states | Partial —
only the first
surgery state
is captured | ✓ Captured | Report had explicit state
labels; publication included
them only narratively | | Spontaneous
remission/no
remission
states | X Not in
source; not
captured | ✓ Captured | Clearly labeled in the report, allowing LLMs to extract | | | B | | | #### 2. Transition Probabilities Key finding: Transition probabilities were partially captured in both sources, but time horizon recognition was consistently flawed—LLMs interpreted annual probabilities as single-cycle (biweekly) values and failed to derive transitions to death or interpret hazard ratios correctly. (Table 2) Table 2: Comparison of LLM performance for the publication vs the technical report on transition probabilities | Aspect | Pub. | Technical
Report | Explanation | |--|---|--|--| | Correctly assigned probabilities | # Partial —
mislinked to
wrong states | !! Partial — mislinked to wrong states | Misalignment between
state definitions and
numeric parameters in
source | | Time horizon
recognition | X All treated
as single-
cycle | X All treated
as single-
cycle | Temporal units like "52
weeks" not translated to
model cycle (biweekly) | | Death
transition | X Not
captured | X Not used
despite death
state | LLM failed to infer
transitions where
probabilities were not
directly reported | | Excess
mortality
due to
surgery | X Not
captured | X Not
captured | Reported as HR, not as a
probability; LLMs cannot
perform statistical
conversions | | | Correctly Correctly assigned transition recognition probabilities | Sasting and the property of th | Aspect Pub. Report Re | #### 3. Costs Key finding: Generative AI correctly extracted health state costs when explicitly stated, particularly surgery costs in the technical report, but failed to identify AE, drug, or administration costs due to lack of structured formatting or implied logic. (Table 3) **Table 3:** Comparison of LLM performance for the publication vs the technical report on costs | Cost
Compo
nent | Pub. | Technical
Report | Explanation | |--------------------------------|--|--------------------------------------|--| | Health state
costs | √ For valid
states; missing
for hallucinated
ones | Linked
to an
existing
state | LLM assumes all identified
states should have a cost,
even if not reported | | Adverse
event (AE)
costs | X Not captured | X Not
captured | AE costs were not explicitly
linked to health states or
transitions | | Drug costs | X Not captured | X Not
captured | Costs embedded in treatment pathway logic, not reported as unit costs | | Surgery
costs | X Not captured | Correctly captured | Clearly labeled as "cost of
surgery" in technical report | | Admin./
infusion
costs | X Not captured | X Not
captured | Requires calculation or
aggregation not present in
plain text | #### 4. Quality of Life (Utility) Inputs Key finding: Utility values linked to explicitly labeled health states were accurately captured across both sources; however, LLMs also assigned utilities to hallucinated states, showing limitations in filtering out non-existent concepts. (Table 4) Table 4: Comparison of LLM performance for the publication vs the technical report on utilities | Utility
Compo
nent | Pub. | Technical
Report | Explanation | |----------------------------|----------------|---------------------|--| | Active | ✓ | ✓ | Clearly reported and labeled | | Remis | ✓ | ✓ | Clearly reported and labeled | | Surgery | X Not captured | Captured | Report explicitly linked
utility values to surgery
health states | | Non-
existent
states | !! Assigned | !! Assigned | LLMs apply utility values even to hallucinated states | ## 5. Treatment Lines Key finding: Generative AI was unable to recognize treatment sequences or transitions between therapy lines in either source, primarily due to the absence of structured or standardized pathway definitions within the source documents. (Table 5) Table 5: Comparison of LLM performance for the publication vs the technical report on treatment lines | Treatment
Component | Pub. | Technical
Report | Explanation | |---|-------------------|---------------------|--| | 1st-line vs.
2nd-line vs.
3rd-line
therapies | X Not
captured | X Not
captured | No structured labeling in
source; embedded in
flowchart-style logic | | Transitions
between
therapylines | X Not
captured | X Not
captured | LLM needs explicit rule-
based transitions; not
inferred from narrative | | Specific drug
transitions | X Not
captured | X Not
captured | Medication switches
described narratively
without standardized
formatting | | AE-based
treatment
discontinuati
on | X Not
captured | X Not
captured | Requires conditional logic
that is not interpretable
from text | # REFERENCES - 1. Salcedo, Jonathan, Daniel Hill-McManus, Chloë Hardern, Oyin Opeifa, Raffaella Viti, Ludovica Siviero, Antonio Saverio Roscini, and Gennaro Di Martino, "Cost-Effectiveness of Vedolizumab as a First-Line Advanced." Therapy Versus Adalimumab Treatment Sequences for Ulcerative Colitis in Italy." PharmacoEconomics-Open 8, no. 5 (2024): 701-714. - 2. ValueGen.Al, https://valuegen.ai/ - https://python.langchain.com/docs/how.to/ga_citations/?form=MG0AV - 4. CrewAl, https://github.com/crewAlInc/crewAl?form=MG0AV3 - 5. OpenAl, https://github.com/openai/openai-dotnet?form=MG0AV3