
Practical Considerations for External Control Arm

May 14, 2025

Fei Fei Liu Executive Director, Global Health Economics and Outcomes Research, Bristol Myers Squibb

ulline Bristol Myers Squibb™

Case example: Establishing an external control arm in supporting clinical trials

1. Identify RWD sources for the patient population of interest

	Registries	Electronic medical records	Chart review
Pros	 Large sample size Longitudinal follow up Standardized data collection Diverse patient population 	 Rich clinical detail Large sample size Comprehensive patient characteristics and outcomes Link to lab results and imaging 	 Tailored to research question Specific clinical information Targeted data collection Capture nuanced clinical decisions and patient outcomes
Cons	 Selection bias Limited to variables collected May lack detailed clinical information Missing data 	 Inconsistencies in documentation Unstructured data requires significant preprocessing Data harmonization can be complex Missing data 	 Time-consuming and labor- intensive Smaller sample size Requires access to clinical sites and patient consent May not represent broader population

Consideration:

• Utility of different sources of RWD and prospective and retrospective data

2. Run quality and feasibility assessment in identified RWDs

- Sample size
 - Adequate power merge RWDs if necessary
 - Representativeness
 - Subgroup analysis
- Endpoints of interest
 - Alignment with trial endpoints
 - Consistency in definitions
 - Data quality
- Patient and disease characteristics
 - Demographics and medical history
 - Disease stage/severity and comorbidities
 - Labs and imaging

Consideration:

- 1. Quality, currentness, and population representativeness of RWD
- 2. Combination of different RWD sources in terms of potential variability in the variable definition

3. Identify and rank clinically relevant prognostic factors for indirect treatment comparison

- Systematic literature review (SLR)
- **Clinical input** (expert panel, present SLR findings, clinical relevance assessment)
- **Statistical methods** (statistical significance and effect size in predicting clinical outcomes)

Consideration:

Identifying, ranking, and selecting prognostic factors of interest in determining propensity score to balance for external control arm purposes

4. Handle missing data

- Exclude variables with high percentage missingness to avoid bias
- Impute missing values with multiple imputation to enhance data completeness

Consideration:

Implications of missing data from the identified RWD sources and approaches to address potential concerns regarding missing data?

5. Run indirect treatment comparison

	Inverse probability of treatment weighting (IPTW)	Propensity score (PS) matching	Doubly robust estimation (PS methods + outcome regression)
Pros	 Utilizes all data Can handle many covariates and complex relationship 	 Mimics randomization Can handle many covariates and complex relationship 	• Provides consistent estimates if either the PS model or the outcome model is correctly specified, offering protection against model misspecification.
Cons	 Sensitive to extreme weights, may requires weight truncation/ normalization Relies on correct specification of PS model 	 Reduction in sample size, challenging for small datasets Relies on correct specification of PS model 	 Requires correct specification of at least one of the models. Results can be more difficult to interpret

Consideration:

IPTW, PS matching and doubly robust estimation as appropriate approaches to individual patient data (IPD)-to-IPD comparisons for external control arm purposes

Thank you

