
Exhibit 2: Data from a hypothetical observational study

Patient ID
Treatment 

assignment 
(D)

Actual and potential outcomes
Individual 
treatment 

effect

Observed 
outcomeTreated 

outcome 
(Y1)

Untreated 
outcome

(Y0)

1 1 7 1 6 7

1 1 5 1 4 5

3 1 4 2 2 4

4 1 10 1 9 10

5 1 9 8 1 9

6 0 5 6 -1 6

7 0 7 8 -1 8

8 0 1 7 -6 7

9 0 10 6 -1 6

10 0 9 7 -4 7

Blue shaded areas indicate unobservable values. Y1 and Y0 represent counterfactual outcomes in treated 
and untreated states; D is a dichotomous indicator of treatment (0-not treated, 1-treated).

POM-based quantities Mathematical formula

Study design

Randomized 
experiment 

Observational

Simple difference in 
mean outcomes (SDO) 

E[Y1 | D = 1] - E[Y0 | D = 0]  0.2 0.2

Difference in expected 
outcomes 

E[Y1 ] - E[Y0 ] 0.2
0.9

Selection bias E[Y0 | D = 1] - E[Y0 | D = 0] 0.0 -4.2

Average treatment 
effect on the treated 
(ATT)

E[Y1 | D = 1] - E[Y0 | D = 1] 0.2 4.4

Average treatment 
effect on the untreated 
(ATU)

E[Y1 | D = 0] - E[Y0 | D = 0] 0.2 -2.6

Average treatment 
effect (ATE)

p x ATT + (1-p) x ATU 0.2 0.9

Selection based on 
benefits 

(1-p) x (ATT - ATU) 0.0 3.5

Average treatment 
effect on the treated + 
selection bias

ATT + selection bias 0.2 0.2

“E” represents expected outcomes; Y1 and Y0 represent counterfactual outcomes in treated and untreated 
states; D is dichotomous indicator of treatment (0 represents not treated, 1 represents treated) exposure; 
p is the probability of treatment and is equal to 0.5 in both datasets.
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Objectives
To describe the potential outcomes model (POM) as a framework for 
comparing the features and applications of three causal study designs that 
are commonly used to measure the effects of healthcare interventions on 
health-related outcomes.

Background
Healthcare decision makers need accurate, reliable information about the effects 
of medical treatments on health and cost outcomes. Causal effect estimation 
strives to combine data, statistical modeling, and subject matter expertise to 
measure the impacts of exposure to treatment on outcomes while reducing the 
potential for bias due to factors that are associated with both treatment 
assignment and outcomes. 

The POM provides a common framework for the transparent design and testing of 
hypotheses about causal effects using randomized experiments and observational 
data.1 It was introduced to the medical and social sciences by Donald Rubin in the 
1970s; and its influence grew rapidly during the 2010s.2-4 The POM defines a causal 
effect for a given individual as a comparison between two states of the world, 
referred to as “potential outcomes”: one had they been treated and the other had 
they been untreated.5 Because an individual cannot be both treated and 
untreated at the same time, only the outcome observed after treatment 

assignment is observable and the other is hypothetical and referred to as their 
“counterfactual” outcome.  This concept informs the design, interpretation, and 
validation of causal estimates in ways that apply to both randomized and 
observational study designs. 

The POM defines a set of three causal parameters or “estimands”6: 

1) Average treatment effect on the treated (ATT) measures the expected 
treatment effect for the subgroup of treated individuals. 

2) Average treatment effect on the untreated (ATU) measures the expected 
treatment effect for the subgroup of untreated individuals. 

3) Average treatment effect (ATE) is the sum of the ATT and ATU weighted by 
the shares of treated and untreated individuals. 

The ATE is equivalent to the expected value of the “simple difference in outcomes” 
(SDO) for treated and untreated groups, under three conditions. The first, 
“exchangeability,” is satisfied when treatment assignment is unrelated to 
outcomes. 7,8 The second is referred to as the “Stable Unit Treatment Value 
Assumption” and is satisfied when (1) the effect of treatment on one individual 
does not affect the effect of treatment in others and (2) the effect of treatment is 
unrelated to the circumstances surrounding treatment assignment.6 When using 
observational data to measure treatment effects, investigators can promote this 
consistency by defining treatment assignment in a way that is both conceptually 
appropriate given the specific causal question and measurable. 

The third condition is “positivity.” It requires that all study members have a non-
zero chance of receiving the treatment or control condition. RCTs promote 
positivity by design.  

In the absence of random assignment, it is reasonable to expect treatment and 

assignment to be correlated. The SDO in observational studies equals the ATE, plus 
two types of bias capturing associations between treatment assignment and 
outcomes related to violations of exchangeability9,10: (1) Selection bias is the 
difference in outcomes in the absence of treatment for treated and untreated 
individuals. It measures the presence of systematic differences between treatment 
and comparison groups that may be related to outcomes.11 (2) Selection on 
benefits of treatment occurs when individuals treated respond differently to 
treatment than do untreated individuals causing treatment to appear more 
beneficial than it is. 

Methods
• Data Sources: Simulated data representing a randomized experiment and an 

observational study with the same observable mean difference in outcomes 
(SDO) (Exhibits 1 and 2).

• Analysis: Calculated using formulas listed in Exhibit 3, including simple 
difference in mean outcomes (SDO), difference in expected outcomes; selection 
bias, average treatment effect on the treated (ATT), average treatment effect on 

the untreated (ATU), average treatment effect (ATE), selection based on benefits, 
and average treatment effect on the treated plus selection bias (Exhibit 3). 

• Compared the key features of three POM-based causal study designs: (1) 
randomized experiments, (2) quasi-experiments, and (3) observational 
studies (Exhibit 4).

Results
In the absence of selection bias and selection based on benefits of treatment in 
the randomized design, SDO = ATE = ATT = ATU = 0.2. By contrast, the ATE from the 
observational study was 0.9 reflecting presence of selection bias (-4.2) and 
selection on benefits of treatment (1.8) that resulted in the non-equivalence of 
average treatment effects in treated and untreated groups (ATT = 4.4 vs ATU = -2.6. 
Finally, the SDO was equal to ATT + selection bias, which does not have a clear 

causal interpretation.

While randomized studies can yield unbiased causal estimates, these estimates 
may not reflect real-world clinical practice or be generalizable. Quasi-experiments 
and observational studies can improve generalizability and realism, but require 
subject matter expertise, complex models, and assumptions to address sources 
of bias. POM concepts can strengthen causal inference even in the absence 
of randomization.

Randomized experiments Quasi-experiments Observational studies

D
es

cr
ip

ti
on

Use physical randomization 
of treatment and 
experimental control over 
the administration of 
treatment to eliminate 
factors that confound the 
relationship between 
treatment and outcomes.

Leverage natural 
experiments that determine 
exposure to interventions of 
research interest, 
independent of patient 
characteristics (e.g., travel 
distance to emergency care 
to “randomize” assignment 
to time sensitive treatment).

Use observed confounders 
statistical modeling to 
identify the effects of 
interventions under the 
assumption of conditional 
exchangeabilitya, often in 
large, diverse populations 
where physical 
randomization is impractical. 
Guided by graphic 
representations of 
relationships among 
exposures, outcomes, and 
measured and unmeasured 
confounders.

Em
p

ir
ic

a
l 

a
p

p
ro

a
ch

es • Unadjusted and adjusted 
tests of group differences

• Detection of heterogenous 
treatment effects

• Difference-in-differences
• Instrumental variables
• Regression discontinuity
• Randomization inference

• Linear and non-linear 
regression models

• Propensity score methods
• Double robust methods

St
re

ng
th

s

• Absence of selection bias 
permits estimation of 
average treatment effects 
over treated and 
untreated subjects

• Clear interpretation of 
effect estimates

• Simple statistical tests
• Strong internal validity
• Transparency and 

traceability via pre-
established protocols

• Potential to isolate causal 
effects by de-coupling 
treatment assignment and 
outcomes

• Reflects real-world 
practice

• Overcomes pragmatic and 
ethical considerations 
associated with RCTs

• Cost-effective use of real-
world data

• Flexibility to support 
investigation of emergent 
public health concerns and 
long-term outcomes

O
p

p
or

tu
ni

ti
es

 

Consider pragmatic trials or 
pragmatic elements to 
traditional trials to promote 
understanding of the 
effectiveness of complex 
interventions in real-world 
settings, especially when 
treatment adherence is a 
concern.

Use care in generalizing the 
results of quasi-experiment. If 
treatment effects differ 
across population 
subgroups, treatment effect 
estimates, referred as local 
average treatment effects.b 
Supplemental analysis can 
help to characterize 
subpopulations contributing 
to the identification of LATEs.

Use double robust methods 
and ML to reduce the 
potential for biased causal 
effect estimates due to 
misspecification of outcome 
and/or treatment 
assignment models. 
Use Quantitative Bias 
Analysis to estimate 
magnitude and direction of 
potential remaining biases 
(e.g., unmeasured 
confounding).
Use “target trial methods” to 
improve accuracy of causal 
effect estimates by aligning 
the timing of treatment 
exposure and outcomes 
measurement.

Exhibit 1: Data from a hypothetical randomized experiment 

Patient ID
Treatment 

assignment 
(D)

Actual and potential outcomes
Individual 
treatment 

effect

Observed 
outcomeTreated 

outcome 
(Y1)

Untreated 
outcome

(Y0)

1 1 7 7 0 7

1 1 5 5 0 5

3 1 4 3 1 4

4 1 10 10 0 10

5 1 9 9 0 9

6 0 7 7 0 7

7 0 5 5 0 5

8 0 4 3 1 3

9 0 10 10 0 10

10 0 9 9 0 9

Blue shaded areas indicate unobservable values. Y1 and Y0 represent counterfactual outcomes in treated 
and untreated states; D is a dichotomous indicator of treatment (0-not treated, 1-treated).

Exhibit 4: Side-by-side comparison of causal study designs 

aConditional exchangeability refers to the independence of potential outcomes from the treatment assignment, 
given a set of observed covariates (Hernan 2020, Fine Point 4.1). bLocal average treatment effects (LATEs) 
represent only unobserved subpopulations whose treatment status was affected by the quasi-randomizing 
mechanism (Cunningham 2021, pp. 176).
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Conclusions
The POM provides a concrete framework assessing the trade-offs associated with 
alternative approaches for measuring the effectiveness of healthcare interventions 
on health outcomes. The POM also clarifies the implications of study design 
decisions for causal inference with observational data more transparent. 
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