

Therapeutic Applications of Drug-Coated Balloons in Symptomatic Intracranial Arterial Stenosis: A Systematic Review and Quantitative Meta-Analysis

Ying Tao^{1,2}, Dunming Xiao^{1,2}, Yingyao Chen^{1,2}, Shimeng Liu^{1,2}*

¹School of Public Health, Fudan University, Shanghai, China; ²NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.

Correspondence: Ying Tao, Email: ytao22@m.fudan.edu.cn; Shimeng Liu, PhD, Email: smliu@fudan.edu.cn.

Introduction

- Intracranial atherosclerotic stenosis (ICAS) is a major cause of stroke^[1-3], with interventional procedures often complicated by adverse events, such as procedural complications, in-stent restenosis, and ischemic events, which pose significant challenges to effective treatment^[4-6].
- While drug-coated balloons (DCBs) have demonstrated efficacy in reducing restenosis in coronary artery disease, current evidence regarding their application in ICAS is limited to small-scale studies, and their safety and efficacy in this context remain to be conclusively established^[7].
- Therefore, We conducted a systematic review and meta-analysis to evaluate the safety and efficacy of DCBs compared with other endovascular treatments for symptomatic ICAS, aiming to provide evidence to support clinical decision-making.

Fig. 1. PRISMA flow chart for study selection.

Methods

Search strategy

A comprehensive literature search was performed in PubMed, Embase, CNKI, and Wanfang from inception to October 16, 2023. A combination of MeSH terms and free-text keywords was used to ensure broad coverage, including 'intracranial', 'cerebral', 'arteriosclerosis', 'artery', 'steno*', 'occlus*', 'drug coat*', and 'drug elut*'.

Eligibility criteria

Studies were included if they met the following criteria:

- Patients were diagnosed with symptomatic ICAS, confirmed by clinical presentation and DSA.
- DCBs were used as the primary intervention for symptomatic ICAS.
- One or more of the following outcome measures were reported: restenosis cases, perioperative adverse events, technical success rates, or follow-up adverse events.

Quality assessment

Two reviewers independently assessed the reporting quality of the included studies using the Methodological Index for Non-Randomized Studies (MINORS) scale, which includes 8 items for non-controlled studies (total score=16) and 12 items for controlled studies (total score=24).

Statistical analysis

- Meta-analyses were conducted in R, using pooled ORs with 95% Cls.
- Heterogeneity was assessed with I² statistic; fixed or random effects models were selected accordingly.
- Freeman-Tukey transformation was applied to estimate the pooled rates for restenosis and safety outcomes, suitable for studies with zero events.
- Meta-regression was used to explore potential sources of heterogeneity.
- Egger's test was used to detect publication bias in single-arm studies.

Results

• Overall, 22 studies were included in this review (Figure 1). The basic characteristics of the 16 observational single-arm studies and six controlled studies are presented in Table 1 and 2.

Rate of restenosis

- 16 single-arm studies reported restenosis rates, with pooled analyses showing rates of 7.81% per lesion (11 studies, 604 lesions) and 7.34% per patient (14 studies, 508 patients).
- Among controlled studies, DCBs significantly reduced restenosis risk compared to conventional balloons (OR=0.24, P<0.05) and stents (OR=0.20, P<0.05).

Perioperative safety

- Among 16 single-arm studies, the pooled periprocedural adverse event rate was 14.43%, and stroke or mortality was 5.75%.
- Five controlled studies showed a non-significant trend favoring DCBs over conventional balloons (OR=0.55) and stents (OR=0.56).

Follow-up safety

 Among 16 single-arm studies, the pooled incidence of follow-up adverse events was 2.03%, and 1.26% for stroke or TIA.

Table 1. Basic characteristics of the included controlled studies.

First author, Publication year	Country	Disease	Time horizon	Patients	Lesions	Males	Age/y	Intervention	Follow-up/ m	MINORS		
Yang Y, 2023	China	sICAD	2017.3-	52	NR	25	48.3±10.6	SeQuent DCB	12	16		
fallg 1, 2023	Cillia	SICAD	2022.3	52	NR	24	47.4±10.1	Stent (Enterprise)	12	10		
Tang Y., 2023	China	sICAS	2019.1-	49	49	38	54.0±9.6	SeQuent Please NEO	6*	16		
1d11g 1., 2025	Cillia	SICAS	2021.8	51	51	36	58.6±7.8	SacSpeed Balloon	6*	10		
	China	sICAD	2017.1- 2021.6	16	16	9	62.7*(58.8-69.5)	SeQuent Please NEO	9.5(6.0-12.0) *	15		
Wang J., 2021				13	16	8	61.8*(57.0-67.0)	Balloon (Tazuna, Ryujin, Gateway, Sprinter)	7.6(2.8-11.0) *			
				6	8	5	69.8*(68.0-75.5)	Stent (Wingspan, Solitaire, Apollo)	13.5(5.8-17.8) *			
Zhang J., 2020	China	sICAD	2016.1- 2019.1	42	42	30	57.6±10.8	SeQuent Please NEO	185±33 days	17		
				73	73	51	59.1±7.9	Stent	185±33 days	17		
	China	ICAD	2017.1- 2022.1		19	11	64.0*(62.0-74.0)	SeQuent Please NEO	311.6±185.6 days			
Zhang S., 2022				45	22	13	61.0*(55.3-65.0)	Balloon (Tazuna, Ryujin, Gateway, Sprinter)	252.4±200.9 days	11		
					9	4	67.5*(65.3-70.0)	Stent (Wingspan, Solitaire, Apollo)	501.4±286.2 days			
Gruber P., 2018	Switzerland		2017.1	8	NR	5	68.5 (52-76)	Neuro Elutax SV DEB	9.5 (4.5–27) *			
		Switzerland	sICAS	sICAS	CAS 2017.1- 2022.1	2017.1- 2022.1	ΙΓΔς	11	NR	5	67 (59-73)	Wingspan/Gateway stent system

Table 2. Basic characteristics of the included single-arm studies.

First author, Publication year	Country	Disease	Time horizon	Patients	Lesions	Males	Age/y	Intervention	Follow-up (Clinical, Imaging)/m	Technical success	Remedial stent	MINO
Yang X., 2023	China	sICAS	2021.5-2022.7	24	NR	17	64±6	SeQuent Please NEO	10*, 7*	100%	4	11
Yang X., 2021	China	sICAS	2018.9-2020.5	48	51	34	61.6±10.5	SeQuent Please	8* <i>,</i> 5.5*	98%	1	10
Yang X., 2020	China	sICAD	2018.9- 2019.12	16	19	15	63.1±9.2	SeQuent DCB	6.3, 5.6	100%	0	8
He Y., 2023	China	sICAS	2018.1-2021.8	49	49	38	54 ± 10	SeQuent Please	12*, 6*	91.8%	15	9
Han J., 2019	China	sICAS	2016.9-2017.9	30	31	24	57.4±8.3	SeQuent Please	9.8 ± 2.6 , 7.0 ± 1.1	100%	2	10
Jiang S., 2023	China	sICAD	NR	70	72	50	55.5*(46.8- 66)	SeQuent Please	6±1	NR	NR	12
Yang M., 2023	China	sICAD	2020.1-2021.2	29	29	22	49*(35-56)	SeQuent DCB	4.1*(3.3-6.7)	NR	0	13
Qiao H., 2022	China	sICAD	2015.9-2021.3	242	250	156	69.2 ± 12.2	SeQuent Please	> 1, 9.9±4.1	100%	18	10
Wang A., 2021	China	sICAD	2015.10- 2018.4	35	39	20	61.3±9	SeQuent Please	20.9±9.8, 10.7±3.9	97%	3	11
Hao Y., 2022	China	sICATO	2016.1- 2020.10	30	NR	16	57.3±10.12	SeQuent Please	7.0±3.7, 8.0±3.7	100%	8	9
Zhang Y., 2021	China	sICAS	2018.1- 2020.10	7	NR	7	28.4±3.9	SeQuent Please	15.4±6.9, 6.6±4.2	100%	2	6
Zhao W., 2023	China	sICAO	2015.1-2021.7	148	148	100	58.0 ± 9.1	SeQuent Please	25.8 ± 15.8 , 4.9 ± 2.4	100%	52	12
Gruber P., 2019	Switzerland	sICAD	2016.9-2018.1	10	10	10	73*(69-77)	SeQuent Please NEO	3*(2-3)	100%	0	10
Remonda L., 2021	Switzerland	sICAS	2014-2019	33	35	27	72*(66-77)	Neuro Elutax SV or SeQuent Please NEO	9*(3-22)	NR	NR	10
Wang L., 2023	China	sICAS	2020.6- 2021.12	40	40	32	54.5±9.9	DCB	8.9±2.1	100%	13	6
Xu G., 2023	China	sICAS	2017.1- 2021.12	80	80	55	59.4±11.2	Rapamycin- eluting balloon	8.7±2.0	100%	NR	8
*· median(quartile)· NR· not report												

*: median(quartile); NR: not report.

Fig. 2. Forest plot of restenosis rates in patients treated with DCBs (Patients unit).

Fig. 3. Forest plot of restenosis rates in patients treated with DCBs. (A) Compared to balloons. (B) Compared to stents.

Conclusion

- This study showed that DCBs significantly reduced restenosis rates while maintaining a favorable safety profile in the treatment of ICAS.
- With perioperative stroke and mortality rates comparable with stent-based interventions and a low incidence of strokes and transient ischemic attacks (TIAs) during follow-up, these findings support the potential clinical integration of DCBs.
- Further prospective, large-scale studies with rigorous methodologies are needed to confirm long-term outcomes and optimize their use in intracranial applications.

- [2] Hurford R, Wolters FJ, Li L, et al. Prevalence, predictors, and prognosis of symptomatic intracranial stenosis in patients with transient ischaemic attack or minor stroke: a population-based cohort study. Lancet Neurol 2020;19:413–21.
 [3] Holmstedt CA, Turan TN, Chimowitz MI. Atherosclerotic intracranial arterial stenosis: risk factors, diagnosis, and treatment. Lancet Neurol 2013;12:1106–14.
- [4] Wang AY-C, Chang C-H, Chen C-C, et al. Leave Nothing Behind: Treatment of Intracranial Atherosclerotic Disease with Drug-Coated Balloon Angioplasty. Clin Neuroradiol 2021;31:35–44.
- [5] Jiang W-J, Cheng-Ching E, Abou-Chebl A, et al. Multicenter analysis of stenting in symptomatic intracranial atherosclerosis. Neurosurgery 2012;70:25–30.
- [6] Wang Z-L, Gao B-L, Li T-X, et al. Severe symptomatic intracranial internal carotid artery stenosis treated with intracranial stenting: a single center study with 58 patients. Diagn Interv Radiol 2016;22:178–83. [7] Li G, Qiao H, Lin H, et al. Application of drug-coated balloons for intracranial atherosclerosis disease: a systematic review. Clin Neurol Neurosurg 2022;213:107065.

References: [1] Chaturvedi S. Asymptomatic Intracranial Artery Stenosis-One Less Thing to Worry About. JAMA Neurol 2020;77:935–6.