Evaluating the Feasibility of a Network Meta-**Analysis Comparing Treatment Options in Polycythemia Vera**

Andrew Howe, PharmD¹, Noemi Hummel, PhD², Claudia Castro, MS, PharmD³, Agnieszka Kopiec, MSc⁴, Hung Lun Chien, MPH³

¹PharmaEssentia, Burlington, MA, USA, ²Certara GmbH, Lörrach, Germany, ³Former Employee PharmaEssentia, Burlington, MA USA, ⁴Certara, Krakow, Poland

A andrew howe@pharmaessentia.com

KEY FINDINGS & CONCLUSIONS

- Network meta-analysis (NMA) for a rare disease like polycythemia vera (PV) was not feasible to conclude due to heterogeneity among studies including the population of interest, treatments, outcome definitions, length of follow-up and potential treatment effect modifiers.
- These published finding are valuable to share during rare disease formulary evaluations utilizing NMA to assess comparative clinical evidence when head-to-head clinical trial data is absent.

Scan the QR code to receive a copy of this poster.

Copies of this poster obtained through the Quick Response (QR) code are for personal use only and may not be reproduced without permission of the authors.

REFERENCES:

- 1. Christensen SF. Eur J Haematol. 2022;109(5):526-541
- Silver RT. Expert Rev Hematol. 2023;16(4):253-266 Dores GM. Am J Hematol. 2021;96(12):E451-E454.
- 4. Abu-Zeinah G. Leukemia. 2021;35(9):2592-601.
- 5. Alvarez-Larrán A. Cancer. 2022;128(13):2441-8. 6. Barbui T. Ann Hematol. 2024;103(2):437-42.
- 7. Barbui T. NEJM Evid. 2023;2(6):EVIDoa2200335
- 8. Barbui T. Lancet Haematol. 2021;8(3):e175-e84. 9. Gerds AT. Hemasphere. 2023;7(Suppl):e48080f5.
- 10. Gill H. Hematology. 2020;25(1):247-57.
- 11. Gisslinger H. HemaSphere. 2019;3(S1):670-671
- 12. Gisslinger H. Blood. 2020;136:33-33. 13. Gisslinger H. HemaSphere. 2022;6:97-98.
- 14. Gisslinger H. Blood. 2023;142: 4563-63.
- 15. Gisslinger H. HemaSphere. 2023;7(S3):e216416f
- 16. Gisslinger H. Lancet Haematol. 2020;7(3):e196-e208.
- 17. Gisslinger H. Leukemia. 2023 Oct;37(10):2129-2132.
- 18. Griesshammer M. Ann Hematol. 2018;97(9):1591-600
- 19. Harrison CN. J Clin Oncol. 2023;41(19):3534-44. 20. Huang BT. Leuk Res. 2014;38(10):1177-83.

INTRODUCTION

- Polycythemia vera (PV) is a rare, chronic hematologic malignancy characterized by excessive red blood cell production mainly due to mutations in the JAK2 gene.
- This overproduction increases blood viscosity, elevating the risk of thromboembolic events, cardiovascular complications, and progression to myelofibrosis or acute myeloid leukemia.^{1,2}
- PV significantly impacts patient outcomes, leading to a substantial disease burden and reducing overall quality of life.³
- While several treatment options exist to manage hematocrit levels and reduce thrombotic risks, the optimal treatment strategy remains uncertain.
- The current standard treatments for PV include phlebotomy alone (Phleb) or cytoreductive therapy, including hydroxyurea (HU), ruxolitinib (RUX), peginterferon-alfa-2a (PEG), and ropeginterferon-alfa-2b (ROPEG), with or without Phleb.
- Ropeginterferon-alfa-2b, a newly designed interferon, was approved to treat PV in the US in Oct 2021. The comparative effectiveness of existing interferons and JAK inhibitors remains unclear due to the absence of direct head-to-head clinical trials.

OBJECTIVE

- Perform a targeted literature review (TLR) to gather evidence from clinical trials and real-world studies on the efficacy and safety of PV treatments
- Assess feasibility of a network meta-analysis (NMA) indirectly comparing ropeginterferon alfa-2b to peginterferon alfa-2a or ruxolitinib, using standard of care as the common comparator

METHODS

- A TLR (date of search: May 9, 2024) screened clinical comparative evidence on PV treatments between May 2014 and May 2024 from PubMed and relevant conference abstracts, see Table 1 for the PICOS scheme defining the inclusion criteria.
- Key clinical endpoints assessed in the TLR included complete hematologic response (CHR), molecular response, allele burden reduction, event-free survival, and safety outcomes such as adverse events and thromboembolic/thrombotic events.
- Feasibility of performing an NMA for these endpoints, ensuring NMA assumptions such as the homogeneity of trial populations and endpoint definitions are met, was assessed.
- Availability and comparability of outcomes across studies was assessed to enable the construction of treatment networks.

Table 1. PICOS schen	ne c	lef	inin	g tl	he inclusion criteria
				• -	

Category	Inclusion criteria
Population	Patients diagnosed with Polycythemia vera
Interventions/Comparators	Ropeginterferon alfa-2b
Comparators	Peginterferon alfa-2a, Ruxolitinib, standard of care (e.g., Hydroxyurea)
Outcomes	Complete hematological response, Molecular response, Allele burden, An
Study types	Randomized controlled trials (RCTs) and comparative RW studies
Language	English
Search timeframe	May 2014 to May 2024
Bibliographic Database	PubMed
Grey literature	American Society of Clinical Oncology, American Society of Hematology, E

RESULTS

- A total of 193 PubMed records and 460 conference abstracts were screened, with 41 studies meeting the inclusion criteria.⁴⁻⁴⁴ **Figure 1**. Best case evidence network for comparison of PV
- These included 11 randomized controlled trials and 10 observational studies, providing comparative evidence for various treatment regimens in PV.
- Among the 22 studies included for the feasibility assessment, 21 formed a connected network (Figure 1). The study by Podoltsev 2018³⁸ did not provide a connection to the other studies of interest and thus was removed from the network. This study compared a mix of HU and Phleb vs. no treatment.
- Availability of complete hematological response (CHR), molecular response, allele burden and event-free survival across studies is presented in Table 2.

treatments for the outcomes of interest

INFα: interferon-α, PEG: pegylated INFα, Phleb: phlebotomy, ROPEG: ropegylated INFα, RUX: ruxolitinib

- 31. Mascarenhas J. Blood. 2022;139(19):2931-41.
- 32. Mazza GL. Lancet Haematol. 2022;9(1):e38-e48 33. Mesa R. Br J Haematol. 2017;176(1):76-85.
- 34. Mesa R. Eur J Haematol. 2016;97(2):192-200.
- 35. Palandri F. Cancers 2023, 15(14), 3706.
- 36. Passamonti F. Lancet Oncol. 2017;18(1):88-99. 37. Passamonti F. Lancet Haematol. 2022;9(7):e480-e92.
- 38. Podoltsev NA. Blood Adv. 2018;2(20):2681-90.
- 39. Snopek F. Blood. 2023; 142: 6436-36.
- 40. van de Ree-Pellikaan C. Eur J Haematol. 2019;103(5):453-9.

21. Kiladjian JJ. Blood. 2019; 134: 553-53. 22. Kiladjian JJ. Leukemia. 2022;36(5):1408–1411. 23. Kiladjian JJ. Ann Hematol. 2018;97(4):617-27. 24. Kiladjian JJ. Lancet Haematol. 2020;7(3):e226-e37. 25. Knudsen TA. Blood. 2018; 132: 580-80. 26. Knudsen TA. HemaSphere. 2019;3(S1):741-742. 27. Knudsen TA. Blood. 2023; 142: 746-46. 28. Koschmieder S. Blood. 2023; 142: 619-19. 29. Krichevsky S. Blood. 2019; 134: 1664-64.

30. Liu D. Haematologica. 2022;107(4):991-5.

- ny adverse event, (Thrombo-) Cytopenia
- European Hematology Association

41. Vannucchi AM. N Engl J Med. 2015;372(5):426-35. 42. Vannucchi AM. Ann Hematol. 2017;96(7):1113-20. 43. Verstovsek S. Blood. 2020; 136: 45-46. 44. Yacoub A. Blood. 2019; 134: 2943-43.

RESULTS (continued)

Table 2. Availability of outcomes across included studies

Study	Comparison	Follow-up (months)	CHR ^a	Molecular response ^f	Allele burden ^m	Event-free survival
PROUD-/CONTINUATION-PV ^{11-17,21,22}	ROPEG vs. HU	Up to 72	√ b	√ g	\checkmark	√ 0
Low-PV ⁶⁻⁸	ROPEG vs. Phleb	Up to 24		√ h	\checkmark	
MPD-111/112 ^{31-32,44}	PEG vs. HU	Up to 36	\checkmark		√ n	√ p
DALIAH ²⁵⁻²⁷	INFα vs. HU	36	\checkmark	√ i	\checkmark	
Huang 2014 ²⁰	INFα vs. HU	Up to 60	√ c	√j		√ q
Liu 2022 ³⁰	INFα vs. HU	Up to 60	✔ d	√ h	\checkmark	√ r
Krichevsky 2019 ²⁹ , Abu-Zeinah 2021 ⁴	INFα vs. HU vs. Phleb	Up to 336				√ s
van de Ree-Pellikaan 2019 ⁴⁰	Phleb vs. HU vs. Phleb+HU	Up to 12	✔ d			
Snopek 2023 ³⁹	ROPEG vs. PEG vs. RUX	15				
RELIEF ³³	RUX vs. HU	4				
REVEAL ⁹	RUX vs. HU	Up to 12				
Gill 2020 ¹⁰	RUX vs. PEG vs. HU	6	\checkmark			
RESPONSE/ RESPONSE-2 ^{18,23-24,34,36-} 37,41-42	RUX vs. BAT	Up to 8	√ d	√ k	\checkmark	
MAJIC-PV ¹⁹	RUX vs. BAT	12	√ e	√I	\checkmark	√ s
PV-AIM ⁴³	RUX vs. HU	Up to 156				
RuxoBEAT ²⁸	RUX vs. BAT	6	\checkmark			
Alvarez-Larrán 2022 ⁵	RUX vs. BAT	96				√t

^a For CHR, each of the following must hold: HC<45% w/o phlebotomy, Platelet count 400×10^9 /L, WBC count≤10×10^9/L, normal spleen size on imaging, no disease-related symptoms (microvascular disturbances, pruritus, headache). b CHR without the spleen-size and/or symptoms requirements are also available. c CHR definition without phlebotomy requirement. d CHR definition without phlebotomy, spleen-size and symptoms requirements. ^e CHR definition without symptoms requirements.^f Molecular response is defined as complete response (i.e., reduction of any molecular abnormality to undetectable levels) or partial response, applying only to patients with a baseline value of mutant allele burden ≥10% (i.e., reduction of ≥ 50% from baseline value in patients with < 50% mutant allele burden at baseline OR reduction of ≥ 25% from baseline value in patients with > 50% mutant allele burden at baseline). ^g Complete or partial response. ^h Partial response only, applying only to patients with a baseline value of mutant allele burden ≥20%. [†] Partial response only. ^j Complete or partial response without restriction on baseline allele burden. ^k Complete response only, and partial response only, applying only to patients with a baseline value of mutant allele burden ≥20%. ¹ Partial response only without restriction on baseline allele burden.^m Allele burden is provided as change from baseline.ⁿ Provided as medians over time.^o Events included thromboembolic event, myelofibrosis, acute leukemia, death or disease progression, death and thromboembolic events. ^p Events included major thrombotic event, major hemorrhagic complications, myelofibrosis, acute leukemia or death. ^q Events included thrombosis, bleeding, spleen enlargement, severe myelofibrosis or death. ^r Myelofibrosis-free survival and thrombosis-free survival were reported. ^s Myelofibrosis-free survival was reported. ^t Events included major thrombosis, major hemorrhage, transformation, or death.

- required to be reached without phlebotomy.
- response.

Table 3. Patient baseline characteristics of studies forming networks

Study	Study population	Arm	Age, median (IQR) [years]	Sex, M [%]	Spleen size median (IQR) [cm]	Allele burden at baseline, mean (SD) [%]
PROUD-PV ¹⁶	Adults with PV	ROPEG	60 (52, 66)	46	13.1 (11, 15)	41.9 (24)
		HU	60 (48, 67)	47	13 (11.5, 15.2)	42.8 (24)
CONTINUATION- PV ¹⁶	Adults with PV	ROPEG	58 (50 <i>,</i> 64)	49	13.5 (11.5, 15)	42.8 (23)
		HU/BAT	59 (49 <i>,</i> 65.5)	47	12.8 (11.3, 15.5)	42.9 (23)
Low-PV ⁷	Low-risk patients with PV	ROPEG	51.7 (45.5, 55.3)	73.4	2.0 (2.0, 3.0)	34 (18, 57) ^{§,#}
		Phleb	48.2 (43.7, 57.4)	61.9	2.5 (2.0 <i>,</i> 5.0) [∥]	27 (19, 66) ^{§,#}
MAJIC-PV ¹⁹	Patients resistant/ intolerant to HU	RUX	67 (34 <i>,</i> 88) ⁺	60	14 (9 <i>,</i> 26) ⁺	64 [‡]
		HU/BAT	66 (28 <i>,</i> 85) ⁺	56	14 (9 <i>,</i> 30) ⁺	58 [‡]
Liu 2022 ³⁰	PV patients	IFNα -2b	51 (44, 57)	39	NR	56 (35 <i>,</i> 73) [§]
		HU	61 (52, 67)	49	NR	59 (33 <i>,</i> 73) [§]
MPD-RC 112 ^{31,*}	High-risk ET/PV patients	PEG	60 (19 <i>,</i> 79) ⁺	60	12.5 (6.5, 22)	34.5 (22.0)**
		HU	63 (18 <i>,</i> 87) ⁺	56	12.5 (2.1, 20)	36.0 (18.3)**
DALIAH ^{27,*}	Newly diagnosed or untreated MPN patients	IFNα	59 (20, 88) ⁺	54	NR	33 (19, 51)
		HU	68 (60, 80) ⁺	63	NR	37 (17, 52)
RESPONSE ⁴¹	Patients with PV, phlebotomy-dependent patients with splenomegaly	RUX	62 (34, 90)	60	7 (0, 24) ⁺	76.2 (17.8)
		BAT	60 (33, 84)	71.4	7 (0, 25) ⁺	75 (22.6)
RESPONSE-2 ^{36,37}	Adults with PV, no palpable splenomegaly, and HU resistance or intolerance	RUX	63 (54, 61)	53	NR	53 (9 <i>,</i> 95) ⁺
		BAT	67 (61, 74)	63	NR	74 (13, 95) ⁺
Van de Ree-	Patients with low- and high- profile risk of PV	Phleb	58.7 (13.1) [¶]	37	NR	NR
Pellikaan 2019 ⁴⁰		HU	69.1 (9.2) [¶]	12	NR	NR

baseline refers to JAK2V617F. *Baseline characteristics reported involve both PV and ET, as presented in the original publication, if not stated differently. †Median (range), ‡ Median, § Median (IQR). I measured below the costal margin, [¶] Mean (SD), [#] Patients responding at Month 12, ** For PV patients.

LIMITATIONS

additional data that could potentially be used in unanchored comparison.

CONCLUSION

- require access to patient-level data.
- assess comparative clinical evidence when head-to-head clinical trial data is absent.

Abbreviations: BAT: best available therapy, CHR: complete hematological response, ET: essential thrombocythemia, HC: hematocrit, HU: hydroxyurea, INF α : interferon- α , IQR: interquartile range, M: male, MPN: Myeloproliferative neoplasms, NMA: network meta-analysis, PEG: pegylated INF α , Phleb: phlebotomy, PreMF: prefibrotic myelofibrosis, PMF: primary myelofibrosis, PV: polycythemia vera, ROPEG: ropegylated INFα, RUX: ruxolitinib, SD: standard deviation, WBC: white blood cell.

Funding and Disclosures: This study was funded by PharmaEssentia. Andrew How and Hung Lun Chien are employees of PharmaEssentia. Claudia Soledad Castro was employee of PharmaEssentia at the time of the study. Noemi Hummel and Agnieszka Kopiec are employees of Certara, which is a Presented at the ISPOR 2025 conference, May 13-16, Montreal, QC, Canada paid consultant to PharmaEssentia.

• Definitions of endpoints varied considerably across studies, impeding comparisons across studies. E.g.,

• CHR rarely included requirements on spleen size and/or disease-related symptoms, and hematocrit (HC) < 45% was not always

• Also, molecular response was defined differently across studies, and some studies reported partial instead of complete

• Time points of assessment and follow-up times differed across studies, and standard of care (BAT) was differently defined, e.g., 100% HU or a mix of HU and other therapies, further precluding NMA.

 Patient populations included in the studies forming networks were heterogenous with respect to important treatment effect modifiers, including individuals newly diagnosed or untreated, with high-risk features or low-risk PV, or refractory or intolerant to HU, thus violating the homogeneity requirement of NMA (Table 3)

• Only comparative studies were included in the current assessment. Non-comparative studies could provide

• NMA for a rare disease like PV was not feasible to conclude due to heterogeneity among studies including the population of interest, treatments, outcome definitions, length of follow-up and potential treatment effect modifiers. Population-adjusted indirect comparison methods can reduce some of the heterogeneity but

• These published findings are valuable to share during rare disease formulary evaluations utilizing NMA to

