Moving Beyond Partitioned Survival Models in Oncology Submissions: Incorporation of Canada's Drug Agency Guidance on Model Structure Park K,¹ Shah A,¹ Jayakarunakaran A,¹ Atkinson M¹ ¹Costello Medical, Boston, MA, US Intervention of interest Olaparib + abiraterone panitumumab + XELOX Nivolumab-relatlimab Glofitamab Teclistamab Pembrolizumab Nab-paclitaxel Nivolumab Elranatamab **Epcoritamab** Relugolix Treosulfan + fludarabine Nivolumab + ipilimumab Niraparib + abiraterone acetate Trifluridine-tipiracil + bevacizumab Dostarlimab + carboplatin-paclitaxel Panitumumab + FOLFOX; panitumumab + FOLFIRI; Ibrutinib monotherapy; ibrutinib + rituximab Cemiplimab + platinum-based chemotherapy Pembrolizumab + trastuzumab + chemotherapy Pembrolizumab + chemotherapy Nab-paclitaxel + gemcitabine Nab-paclitaxel + gemcitabine Enzalutamide ± ADT Sacituzumab govitecan Calaspargase pegol # Objective To assess how 2023 Canada's Drug Agency (CDA-AMC) guidance, which highlights limitations of partitioned survival models (PSMs), has influenced model structure choice in oncology health technology assessment submissions. # Background - CDA-AMC is a pan-Canadian organization designed to provide healthcare decision makers with independent evidence and advice to make informed drug, health technology, and health system decisions.¹ - On 1 May 2023, CDA-AMC released new guidance for extrapolating clinical evidence within economic evaluations.² The report highlighted that economic models should consider causal relationships between time, health status, treatment, and mortality, which are not explicitly accounted for in PSMs, but can be included in models with a Markov structure. ### Methods - ◆ A list of Reimbursement Review Reports from the CDA-AMC website was extracted on 26 November 2024. - Reports that were marked as "complete" for oncology drugs that were submitted after 1 May 2023, were downloaded. An equal number submitted before this date were downloaded to facilitate comparison of reports submitted pre-and post-published guidance. - The following information was extracted: assessment details (disease area, intervention and comparators, and CDA-AMC recommendation), the sponsor's model structure, its adequacy in addressing the decision problem (used as a proxy for acceptance of model structure), and any additional comments by CDA-AMC relating to model structure. # Results #### Model Structures Pre- and Post-Guidance - Fifty CDA-AMC submissions were reviewed (25 before and 25 after the threshold date; Table 1). Two non-sponsored submissions (pre-May 2023 guidance) without manufacturer models were excluded. Of the remaining 48 submissions, 29/48 (60%), 4/48 (8%), and 15/48 (31%) were PSMs, (semi-)Markovs, and other model structures, respectively. Other model structures included cost-comparison, cost-minimization, hybrid (decision tree and PSM), and patient-level microsimulation models. - Pre-guidance, 16/23 (70%), 3/23 (13%), and 4/23 (17%) were PSMs, (semi-)Markovs, and other model structures, respectively. Post-guidance, 13/25 (52%), 1/25 (4%), and 11/25 (44%) were PSMs, (semi-)Markovs, and other model structures, respectively (Figure 1). ## Model Structure Acceptance Pre- and Post-Guidance - The acceptance rate of model structures pre-and post-guidance was also assessed (Figure 1). - Pre-guidance, 6/16 (38%) PSMs and 0/3 (0%) (semi-)Markov models were accepted. Post-guidance, 7/13 (54%) PSMs and 1/1 (100%) (semi-)Markov models were accepted. #### Feedback from CDA-AMC on Model Structure - In their comments pre-and post-guidance, CDA-AMC consistently highlighted limitations of PSMs, including independence of progression-free and overall survival and challenges in modeling subsequent therapies, suggesting that alternative modeling approaches may be more appropriate in some circumstances (Figure 2). - Submissions that used (semi-)Markov models pre-guidance did not receive comments regarding these structural assumptions and biases, and the submission with a (semi-)Markov model post-guidance release did not receive any comments on model structure at all. # Conclusion Based on the reviewed submissions, the use of (semi-)Markov structures did not increase following the 2023 guidance; however, sample size may limit interpretation. Comments from CDA-AMC align with their guidance, with (semi-)Markov models receiving fewer comments about structural concerns than other model types. However, there were PSMs both pre-and post-guidance that were accepted, indicating that there are circumstances where a PSM is considered suitable. Overall, CDA-AMC feedback indicates that model structure should be carefully considered based on the disease area being modeled to maximize likelihood of acceptance. #### TABLE 1 CDA-AMC oncology submissions reviewed #### Appraisals included pre-guidance release | Date submission received | Disease/condition | Intervention of interest | |--------------------------------|---|---| | 19 August, 2021 | Basal cell carcinoma | Cemiplimab | | 15 December, 2021 | Advanced endometrial cancer | Pembrolizumab | | 24 February, 2022 | Metastatic small cell lung cancer | Lurbinectedin | | 21 April, 2022 | NSCLC | Amivantamab | | 21 April, 2022 | Unresectable or metastatic uveal melanoma | Tebentafusp | | 9 June, 2022 | Diffuse large B-cell lymphoma or high-grade B-cell lymphoma | Axicabtagene ciloleucel + third-line therapy | | 16 June, 2022 | Metastatic castration-sensitive prostate cancer | Darolutamide + docetaxel + ADT | | 20 June, 2022 | Triple-negative breast cancer | Pembrolizumab + chemotherapy | | 14 July, 2022 | Biliary tract cancer | Durvalumab + gemcitabine + cisplatin | | 3 August, 2022 | Germline BRCA-mutated, HER2– high-risk early breast cancer | Olaparib | | 19 August, 2022 | KRAS G12C-mutated advanced NSCLC | Sotorasib | | 13 September, 2022 | Resectable NSCLC | Nivolumab + platinum doublet chemotherapy + surgery | | 15 September, 2022 | Acute lymphoblastic leukemia | Brexucabtagene autoleucel | | 23 September, 2022 | Relapsed or refractory multiple myeloma | Ciltacabtagene autoleucel | | 13 December, 2022 | Unresectable or metastatic HER2-low breast cancer | Trastuzumab deruxtecan | | 15 December, 2022 | Unresectable hepatocellular carcinoma | Tremelimumab + durvalumab | | 20 January, 2023 | Chronic lymphocytic leukemia/small lymphocytic lymphoma | Zanubrutinib | | 1 February, 2023 | Relapsed or refractory follicular lymphoma | Tisagenlecleucel | | 17 February, 2023 | Advanced or metastatic renal cell carinoma | Cabozantinib + nivolumab | | 1 March, 2023 | Large B-cell lymphoma | R-CHP | | 6 March, 2023 | T-cell acute lymphoblastic leukemia | Nelarabine + standard of care | | 13 April, 2023 | Relapsed or refractory follicular lymphoma | Axicabtagene ciloleucel | | 21 April, 2023 | Chronic lymphocytic leukemia | Ibrutinib + venetoclax | | NA* | High-risk non-metastatic prostate cancer | Abiraterone + prednisone ± enzalutamide + ADT | | NA* | Metastatic castration-sensitive prostate cancer | Abiraterone + docetaxel + ADT | | n-sponsored submission without | a manufacturer model. | | #### Reimburse with clinical criteria and/or condition Reimburse FIGURE 1 pre- and post-guidance # Time-limited reimbursement recommendation # FIGURE 2 Model structure and structure acceptance in oncology submissions Key CDA-AMC feedback on PSMs Do not reimburse - The sponsor's use of a PSM introduces structural assumptions about the relationship between PFS and OS that likely do not accurately reflect causal relationships within the disease pathway - The Sponsor's base case used a Monte Carlo simulation to characterize the uncertainty of relevant input parameters, however, the absence of a structural relationship between these parameters in the PSM model structure limits the usefulness of this approach Appraisals included post-guidance release Acute lymphoblastic leukemia Metastatic castration-resistant prostate cancer Metastatic castration-resistant prostate cancer Acute myeloid leukemia or myelodysplastic syndromes Relapsed or refractory diffuse large B-cell lymphoma Patients with solid tumours experiencing hypersensitivity Relapsed or refractory diffuse large B-cell lymphoma Gastric or gastroesophageal junction adenocarcinoma Previously treated advanced (locally advanced unresectable or Left-sided metastatic colorectal cancer Waldenström's macroglobulinemia Metastatic colorectal cancer Stage III or stage IV melanoma Adjuvant stage IIB or IIB melanoma Relapsed or refractory multiple myeloma Endometrial cancer reactions to taxanes Advanced prostate cancer metastatic) pancreatic cancer Genito-urinary cancer (prostate cancer) HR+, HER2- advanced or metastatic breast cancer Biliary tract carcinoma Pancreatic cancer Unresectable or metastatic melanoma Relapsed or refractory multiple myeloma Locally advanced or metastatic NSCLC Anti-PD-1 resistant advanced melanoma Date submission received Disease/condition 12 May, 2023 19 May, 2023 19 May, 2023 14 June, 2023 20 June, 2023 10 July, 2023 14 July, 2023 18 July, 2023 15 August, 2023 31 August, 2023 18 October, 2023 24 October, 2023 24 October, 2023 24 October, 2023 6 November, 2023 9 November, 2023 14 November, 2023 14 November, 2023 22 November, 2023 7 December, 2023 21 December, 2023 12 February, 2024 30 April, 2024 18 July, 2024 27 September, 2023 - The structural assumption of a PSM is that membership of mutually exclusive health states must be determined from non–mutually exclusive survival curves. Unlike a Markov model, which can combine inputs from a variety of sources, a PSM is more restrictive - Although PSMs are routinely used to model oncology treatments, this approach was not suitable for this decision problem where the primary goal of both first-line and subsequent treatments is to achieve a cure - PSMs are not suitable to capture changes in response on subsequent lines of therapy, as this model structure only accounts for the costs of subsequent therapies in the progressed state but has limited flexibility to capture their clinical benefits Abbreviations: ADT: androgen deprivation therapy; BRCA: breast cancer gene; CDA-AMC: Canada's Drug Agency; FOLFIRI: folinic acid + fluorouracil + irinotecan; FOLFOX: folinic acid + fluorouracil + oxaliplatin; G12C: glycine-to-cysteine mutation; HER2: human epidermal growth factor receptor 2; HR: hormone receptor; KRAS: Kirsten rat sarcoma virus; NA: not applicable; NSCLC: non-small cell lung cancer; OS: overall survival; PD-1: programmed cell death protein 1; PFS: progression free survival model; R-CHP: rituximab + cyclophosphamide + doxorubicin + prednisone; XELOX: capecitabine + oxaliplatin. References: 1CDA-AMC (2025). About Us. Available at: https://www.cda-amc.ca/about-us. [Last accessed 17 Mar 25]; 2Coyle D. et al. Can J Health Technol 2023;3(5):6–19. Acknowledgements: The authors thank Jon Green, Costello Medical, for graphic design assistance. We also thank Shubhi Pathak, Costello Medical for their contributions to the preparation of this poster. Disclosures: Costello Medical was A. Jayakarunakaran's affiliation at the time of the research submission, but they are no longer affiliated to Costello Medical.