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• A critical challenge in Network Meta-analysis (NMA) is defining 
treatment nodes which profoundly impacts results (Xing & Lin, 2020).

• Lumping distinct treatments can obscure differences, while splitting 
similar ones reduces precision and increases the risk of spurious 
findings due to multiplicity (Barrientos, Page, & Lin, 2024; Efthimiou & 
White, 2020).

• While most lumping/splitting decisions are qualitative (Dhippayom, 
Saldanha, Chaiyakunapruk, & Devine, 2022), data-driven solutions exist 
and demonstrate that the choice can substantively affect NMA results 
(Xing & Lin, 2020).

• Proposed data-driven approaches include a Bayesian non-parametric 
method allowing for uncertainty in classification (Barrientos et al., 2024) 
and a frequentist method using generalized fused lasso to penalize 
differences (Kong, Daly, & Béliveau, 2024).

• Limitations of current data-driven methods include implementation 
difficulties (e.g., custom MCMC), potential interpretation issues with 
specific priors, and the failure to account for treatment effect 
heterogeneity, particularly adjustment for baseline risk (Barrientos et 
al., 2024; Cameron et al., 2018).

• A need exists for a flexible framework that facilitates implementation, 
clarifies interpretation, accounts for heterogeneity (like baseline risk), 
and allows incorporating varying degrees of domain-specific knowledge 
into the clustering process.

• We adapted and extended a Bayesian non-parametric approach, 
replacing the Dirichlet process prior with a spike-and-slab base measure 
with a regularized horseshoe prior. This facilitates implementation with 
generic samplers (e.g., JAGS), avoids mixing issues, and frames 
treatment effects in terms of regularization. 

• We incorporated meta-regression on baseline risk to account for 
heterogeneity, allowing for clustering under varying baseline risks. We 
also developed methods to integrate domain knowledge by limiting the 
number of clusters or specifying informative priors. We illustrate these 
methods in an application to the certolizumab baseline risk adjustment 
example from NICE TSD 3 (Dias, Sutton, Welton, & Ades, 2011).

All model implementations showed good mixing and were well calibrated 
under simulation from the known data-generating process. Node lumping 
differed under the unadjusted and adjusted models, with two groups in the 
former and three in the latter. Model fit statistics were best under the 
baseline risk adjusted clustering model (DIC: 152) and second best under 
the standard non-clustering adjusted model (DIC: 154). This finding 
suggests that out of sample predictive performance can be maintained or 
improved while reducing dimensionality of the network by more than 50%. 
Effective sample size in the DP BLR NMA was 2-4x that of the unclustered 
NMA.

Data-based lumping/splitting decisions informed by prior expectation of 
unique treatments is feasible to implement within existing NICE TSD code. 
Lumped treatments can differ significantly in adjusted compared to 
unadjusted models. Data-based lumping of treatments can have large 
effects on effective sample size on comparisons. Future research should 
consider to ability to leverage prior information in treatments that are 
more likely to be lumped (eg, minor dose differences, treatment in same 
class).
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In both the unadjusted and adjusted DP 
models (Figure 2 Panel A and B), active 
therapies other than rituximab showed 
similarly high probability of being grouped 
into the same cluster. In the unadjusted 
model, however, rituximab has an 
approximately 50% probability of being 
included in this cluster whereas that 
probability dropped to approximately 15% 
when heterogeneity in baseline risk was 
accounted for. This difference was also 
found in the modal network, which 
combined all therapies in the unadjusted 
model but with large uncertainty (41%) 
versus combining all therapies except 
rituximab after adjustment with increased 
confidence (64%).
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