

Broadening the Evidence Base: Incorporating Environmental

Considerations Into HTAs

Ahmad Hecham Alani, PharmD^{1,2}, Mackenzie Mills, PhD^{1,2}, Lucy Kanya, PhD, Panos Kanavos, PhD², Hussain A Al-Omar, PhD³

- ¹ Hive Health Optimum Ltd. (HTA-Hive), London, United Kingdom
- ² The London School of Economics and Political Science (LSE), London, United Kingdom
- ³ Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia

Background

- Healthcare systems account for 4-5% of national GHG emissions, impacting climate and public health.¹
- Rapid healthcare technology advancements present growing environmental challenges, particularly in carbon footprint (CF).²
- Pharmaceuticals contribute 10-55% of healthcare GHG emissions through high energy use and waste across their lifecycle. 1,3
- Medical devices require significant resources for production and disposal; 90% of device waste comes from single-use products.4
- Integrating Environmental Sustainability (ES) considerations into HTA supports more holistic and financially sustainable healthcare decision-making.⁵

Objectives

- This systematic review investigates how ES metrics, particularly CF analyses, are incorporated into HTA and research practices.
- It seeks to determine how these approaches can enhance the quality and scope of evaluations, supporting more comprehensive decisionmaking.

Methods

Literature Search

- Databases: MEDLINE (via PubMed), Psychlnfo, Scopus, CINAHL Plus, EconLit, and EMBASE.
- Timeframe: From inception to October 2023.
- Focus: Integration of ES into HTA and related analysis around decision making in health care contexts.

Eligibility Criteria

- Included studies integrating ES into HTA or broader healthcare evaluations.
- English-language publications only.

Screening and Data Extraction

- Two reviewers independently screened titles, abstracts, and full texts.
- Discrepancies resolved through discussion
- Data extracted on study design, environmental metrics, methods, key findings, and impacts on healthcare decision-making.

Thematic Analysis

 Structured around 22 targeted questions covering EIA definitions, integration into decision-making, financial sustainability, challenges, and case studies.

Reporting

Review process adhered to PRISMA 2020 guidelines.

PRISMA 2020 flow diagram

RESULTS

- Life Cycle Assessments (LCA), carbon footprinting, and Environmentally extended inputoutput (EEIO) analysis are the most methods used to quantify GHGs of pharmaceuticals, medical devices, and procedures.
- The CF of pharmaceuticals showed stark disparities, ranging from 276,596 kg CO2e/kg API for nivolumab to just 0.67 kg CO2e/kg API for Paracetamol—a difference exceeding 400,000-fold.
- These values varied widely due to differences in production methods, usage patterns, and geographic contexts.
- Recent HTA reports, particularly from PBAC and CDA, often focused on drug wastage to address environmental concerns, reflecting a limited scope.
- Many studies demonstrated that incorporating ES metrics into HTA improved decision-making, sometimes yielding long-term financial and clinical benefits.
- Emerging frameworks propose linking clinical outcomes with ES data to guide technology adoption, but inconsistent metrics and reporting hinder comparability and policy action.

Top 10 High-Emission Pharmaceuticals Per kg API

Nivolumab - (Fed-batch and continuous perfusion cultures/multi-use tech)	276,596 CO2e (kg)
Nivolumab - (Perfusion mode/single-use tech)	137,234 CO2e (kg)
Monoclonal antibody (non-specific) (single-use tech)	22,700 CO2e (kg)
Trastuzumab (single-use tech)	20,593 CO2e (kg)
Dexmedetomidine	3,010 CO2e (kg)
Injectable anesthetic drugs	3,000 CO2e (kg)
Morphine	2,040 CO2e (kg)
Desflurane	1,790 CO2e (kg)
Hydromorphone	799 CO2e (kg)
Nitrofurantoin	603 CO2e (kg)

Comparative CO₂e Emissions of Vaccines, MedTech, and **Medical Procedures: Heatmap Analysis**

	Product/Procedure Details	CO ₂ e (kg)*	Unit*
Vaccines **	COVID-19 Vaccine - COMIRNATY® (Pfizer/BioNTech) (cradle to grave) -	0.134 to 0.466	Treatment Course
	multiple countries	0.104 to 0.400	
	COVID-19 Vaccine - mRNA-1273 (Moderna) (cradle-to-grave) - multiple	0.023 to 0.108	
	countries		
	COVID-19 Vaccine - COVISHIELD® (AstraZeneca) (cradle-to-grave) - multiple countries	0.013 to 0.048	
	COVID-19 Vaccine - Ad26.COV2.S (J&J / Janssen) (cradle-to-grave) -	0.007 to 0.024	
	multiple countries	4.47	
	Reusable Ureteroscope	4.47	
	Single-use Ureteroscope	4.43	
	Single-use metal laryngoscope handle	1.6	Use
	Single-use plastic laryngoscope handle	1.41	
	Single-use Gowns	0.905	
	Disposable Laryngeal Mask Airway	0.285	
	Face Shield	0.231	
	Reusable stainless steel laryngoscope handle (sterilization)	0.23	
ec ec	Reusable Laryngeal Mask Airway	0.185	
MedTech	Cup Fit Filtering Facepiece (FFP) Respirator	0.125	
Š	Total emissions from PPEs over 12 months during COVID-19	212,956,000	Year
	Medical gloves - production	11,000,000	
	Scenario without the Respimat® Re-usable	3,196,250	
	Scenario with the Respimat® Re-usable	2,017,000	
	Robotic Rehabilitation Exoskeleton (AGREE Robot)	2,233	
	Surgical Instruments Sector	18	100 USD spent
	Patient-led surveillance (patient-performed teledermoscopy with dermatologist feedback)	16	Participant
	Telemedicine	13	Televisit
Medical Procedures	Individual surgical procedures (non-specific)	1,007	Procedure/Operatior
	Hysterectomy	424	
	Cataract Surgery - phacoemulsification - UK	181.8	
	Cataract Surgery - phacoemulsification - New Zealand	151.9	
	Cataract Surgery - phacoemulsification - Hungary	130	
	Cardiac surgery (e.g., single valve repair or replacement)	124.3	
lica	Cataract Surgery - phacoemulsification - Mexico	121	
Jed	Cataract Surgery - phacoemulsification - France	81.1	
2	Atrial fibrillation catheter ablation	76.9	
	Robotic staging procedure for endometrial cancer	40.3	

- Integrating ES metrics into HTA enhances value-based decision-making by identifying opportunities for sustainable innovation and cost savings.
- Coordinated collaboration among providers, policymakers, manufacturers, and regulators is essential to avoid silos, prevent double counting, and ensure standardised methods.
- Embedding ESG principles within HTA and public procurement frameworks will drive the adoption of greener technologies and reduce GHG emissions.
- Future efforts should focus on assessing high-emission technologies (e.g., monoclonal antibodies) and expand beyond CF to include impacts on other domains such as water use, waste, and biodiversity.
- Advancing these initiatives will make healthcare systems more environmentally sustainable and contribute to global climate and public health goals.

References

- 1. Pichler PP, Jaccard IS, Weisz U, Weisz H. International comparison of health care carbon footprints. Environmental research letters. 2019 May 24;14(6):064004.
- 2. Richie C. Environmental sustainability and the carbon emissions of pharmaceuticals. Journal of Medical Ethics. 2022 May 1;48(5):334-7.
- 3. Wu R. The carbon footprint of the Chinese health-care system: an environmentally extended input—output and structural path analysis study. The Lancet Planetary Health. 2019 Oct 1;3(10):e413-9.
- 4. Sousa AC, Veiga A, Maurício AC, Lopes MA, Santos JD, Neto B. Assessment of the environmental impacts of medical devices: a review. Environment, Development and Sustainability. 2021 Jul;23:9641-66.
- 5. Toolan M, Walpole S, Shah K, Kenny J, Jónsson P, Crabb N, Greaves F. Environmental impact assessment in health technology assessment: principles, approaches, and challenges. International Journal of Technology Assessment in Health Care. 2023 Jan;39(1):e13.

Abbreviations

Active Pharmaceutical Ingredient, API; Canadian Drug Agency, CDA; Carbon Footprint, CF; Environmental Sustainability, ES; Environmental, Social, and Corporate Governance (ESG); Environmentally extended input-output (EEIO) Analysis; Greenhouse Gas Emissions, GHGs; Health Technology Assessment (HTA); Life Cycle Assessment, LCA; Pharmaceutical Benefits Advisory Committee,

Contact Information

For further information, please contact h.alani@hiveoptimum.com