

Development of a Novel Approach to Improve Binary Classification Prediction Tasks When Encountering Time-To-Event Data: Performance Comparison of Four Alternative Approaches To Predict Stimulant Use Disorder Among Persons Authorized To Purchase Medical Marijuana

MSR34

Allen M. Smith¹, Horacio Gomez-Acevedo², Corey Hayes¹, Melody Greer², Bradley C. Martin¹

¹ Division of Pharmaceutical Evaluation and Policy, Department of Pharmacy Practice, University of Arkansas for Medical Sciences, Little Rock, AR, USA; ² Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA

BACKGROUND

- Compared to a more traditional continuous-time survival modeling approach, Suresh et al. (2022) demonstrated a modest improvement in model discrimination can often be achieved when utilizing a discrete-time framework, where time-to-event (TTE) data is converted into a person-period dataset that splits subject follow-up time into equally-spaced intervals.¹
- However, this discrete-time framework may be further improved by informing prediction in each time interval with updated features from prior intervals rather than just utilizing time-independent features.

Objective: Contrast model performance of four approaches to organizing TTE outcomes: 1. a simple binary classification, 2. continuous-time, 3. discrete-time intervals, and 4. discrete-time-updating approach to predict stimulant use disorder (StUD) risk among Arkansas medical marijuana (MMJ) cardholders

METHODS

Data Source

- Time-to-event datasets were constructed using statewide health insurance claims data between November 2018 – December 2023 from the Arkansas All-Payer Claims Database (AR-APCD).³

Study Sample

- Subjects:** Insured (medical + pharmacy benefits), adult (≥ 18 years old) Arkansas MMJ Cardholders without a recent history of StUD in the past 6 months.
- Index Date:** May 11th, 2019 (opening date of 1st Arkansas MMJ dispensary) or receipt date of MMJ eligibility card, whichever came last
- Follow-up:** Index date until 1st occurrence of one of the following: 1) New StUD diagnosis, 2) study end date (Dec. 31st, 2023), 3) health plan disenrollment, 4) death from any cause

Engineered Features [n=202]

- Included demographics, acute + chronic comorbidities, prescription characteristics, and healthcare utilization characteristics.
- Feature selection: Two-pronged recursive feature elimination approach using Random Forest-derived feature importance scores & Cox proportional hazards-derived p-values

Model Training/Testing

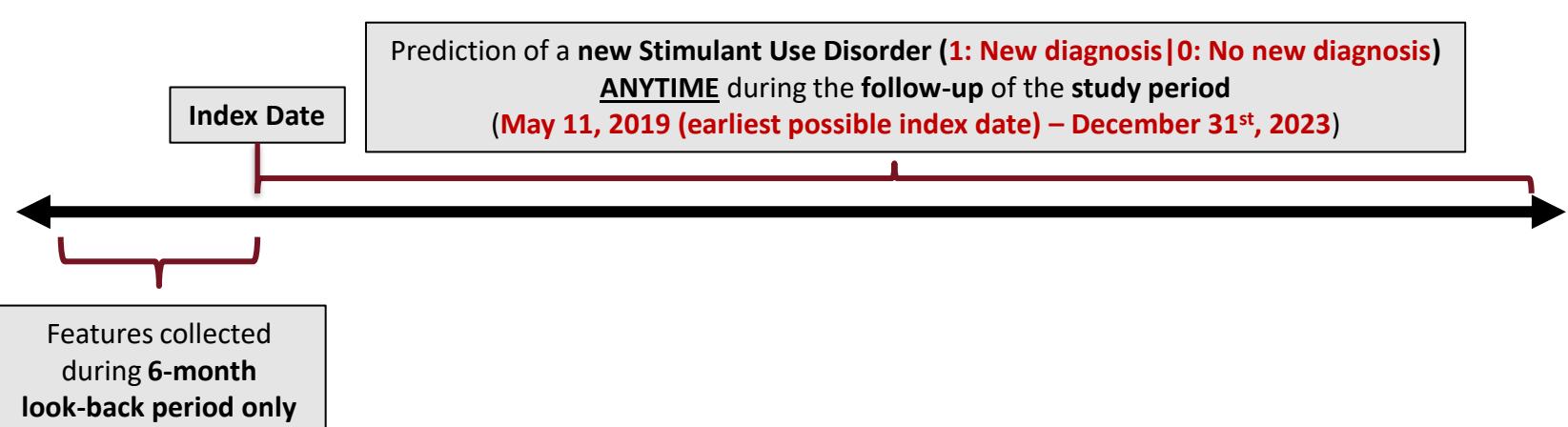
- Train/test split:** Randomized 50:50 split at person level
- Data balancing:** 1:25 random undersampling (RUS) of the majority class
- Hyperparameter tuning:** 90 iterations with 5-fold cross validation
- Performance Metrics:** Cumulative sensitivity/dynamic specificity area under the receiver-operating characteristic (C/D AUC), Brier Score, Sensitivity, Specificity, Positive Predictive Value (PPV), Negative Predictive Value (NPV)

Data Structure

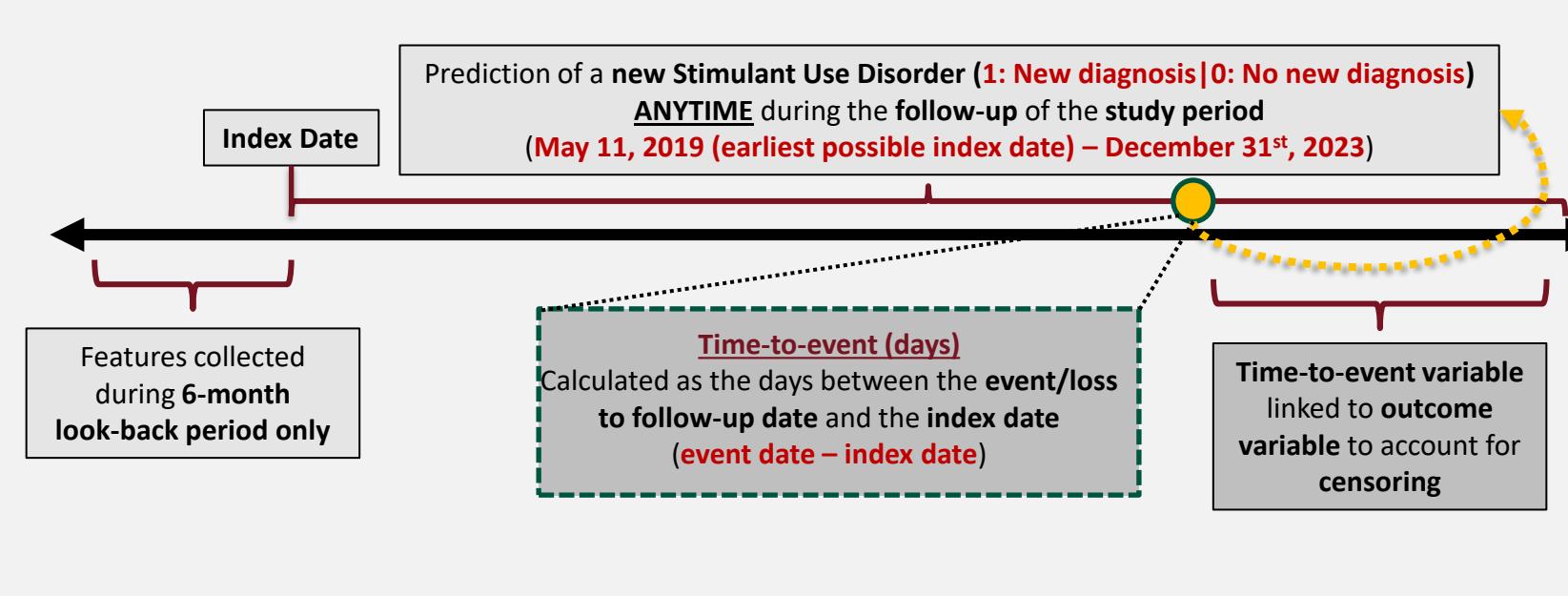
- Simple Binary Classification**
 - Person-level dataset that included feature values at baseline with an event indicator (1: StUD | 0: No StUD)
 - Trained Classifiers (2): Random Forest (RF), Logistic Regression (LR)
- Continuous-Time**
 - Person-level dataset that included feature values at baseline, the event indicator, and a continuous variable indicating the length of the follow-up period in days.
 - Trained Classifiers (4): Random Survival Forest (RSF), Gradient Boosting (GB), Support Vector Machine (SVM), Cox Proportional Hazards Survival Model (CPH)
- Discrete-Time**
 - Person-period-level dataset where each row represented a 90-day time interval that the subject remained at risk
 - StUD prediction for each time interval was informed by feature values collected at baseline.
 - Trained Classifiers (6): RF, LR, RSF, GB, SVM, CPH
- Discrete-Time-Updating**
 - Person-period-level dataset where each row represented each 90-day time interval that the subject remained at risk
 - StUD prediction for each time interval was informed by the prior 6 months of feature values.
 - Trained Classifiers (6): RF, LR, RSF, GB, SVM, CPH

METHODS

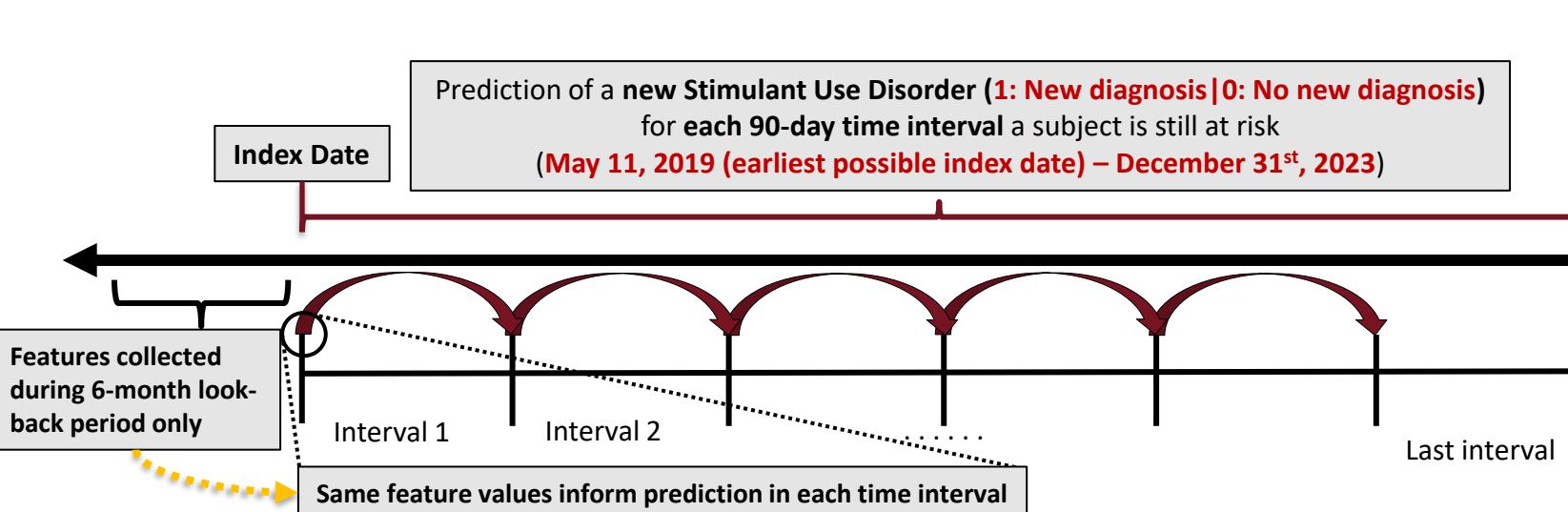
Approach 1: Simple Binary Classification



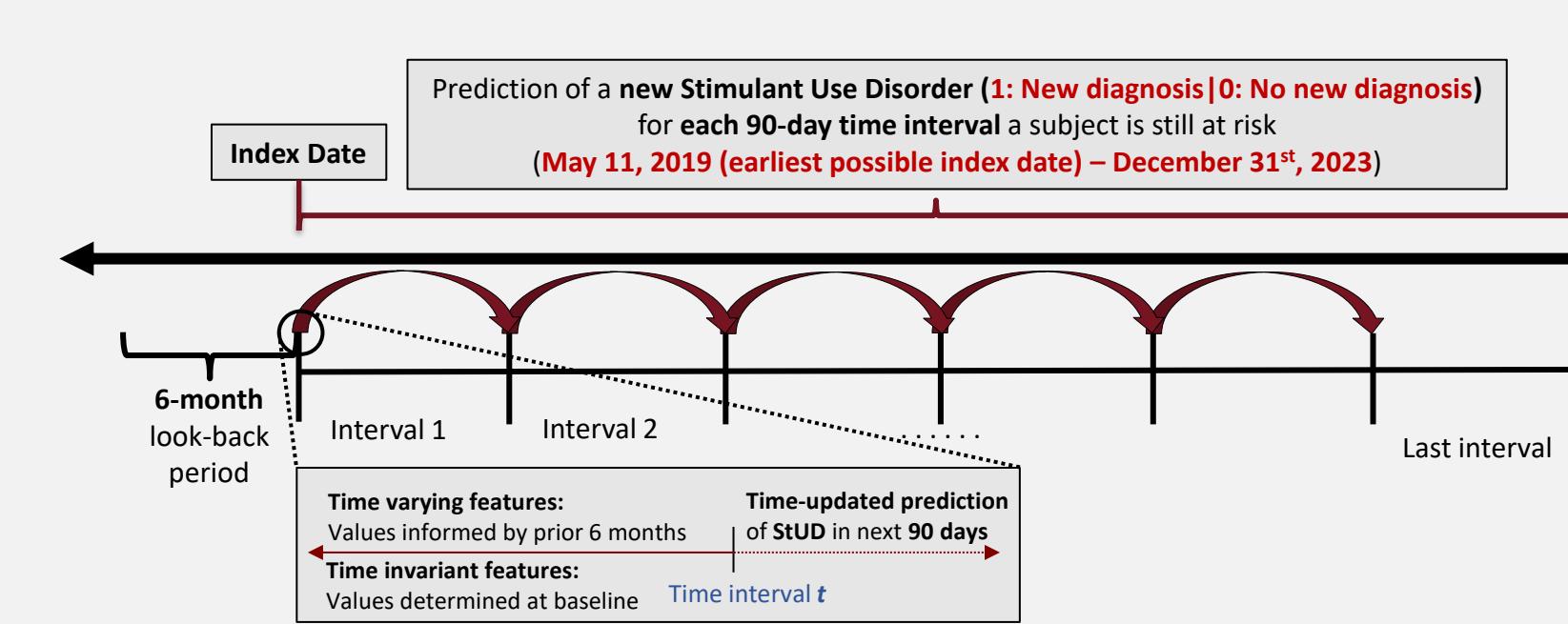
Approach 2: Continuous-Time



Approach 3: Discrete-Time



Approach 4: Discrete-Time-Updating



RESULTS

A total of 54,758 Arkansas MMJ cardholders met eligibility criteria, of which 857 (1.57%) received a new StUD diagnosis during the follow-up period.

Prediction of Stimulant Use Disorder within the next 90 days among Arkansas Medical Marijuana Cardholders: Model Performance Comparison Between Four Alternative Approaches for Handling Time-To-Event Data

Classifier	Binary		Continuous-Time		Discrete-Time		Discrete-Time-Updating	
	AUC	Brier Score	Mean C/D AUC	Mean Brier Score	Mean C/D AUC	Mean Brier Score	Mean C/D AUC	Mean Brier Score
Random Survival Forest ^a	-	-	0.7516	0.0143	0.7419	0.0031	0.7793	0.0030
Gradient Boosting ^a	-	-	0.7580	0.0147	0.7480	0.0031	0.7878	0.0031
Support Vector Machine ^a	-	-	0.7175	0.0147	0.7277	0.0027	0.8054	0.0027
Cox Proportional Hazards ^a	-	-	0.7201	0.0165	0.7298	0.0036	0.8044	0.0032
Random Forest ^b	0.7426	0.0157	-	-	0.7468	0.0030	0.7386	0.0030
Logistic Regression ^b	0.7120	0.0188	-	-	0.7229	0.0032	0.7932	0.0031
Random Forest ^c	-	-	-	-	0.7435	0.0030	0.7323	0.0030
Logistic Regression ^c	-	-	-	-	0.7266	0.0032	0.7491	0.0032

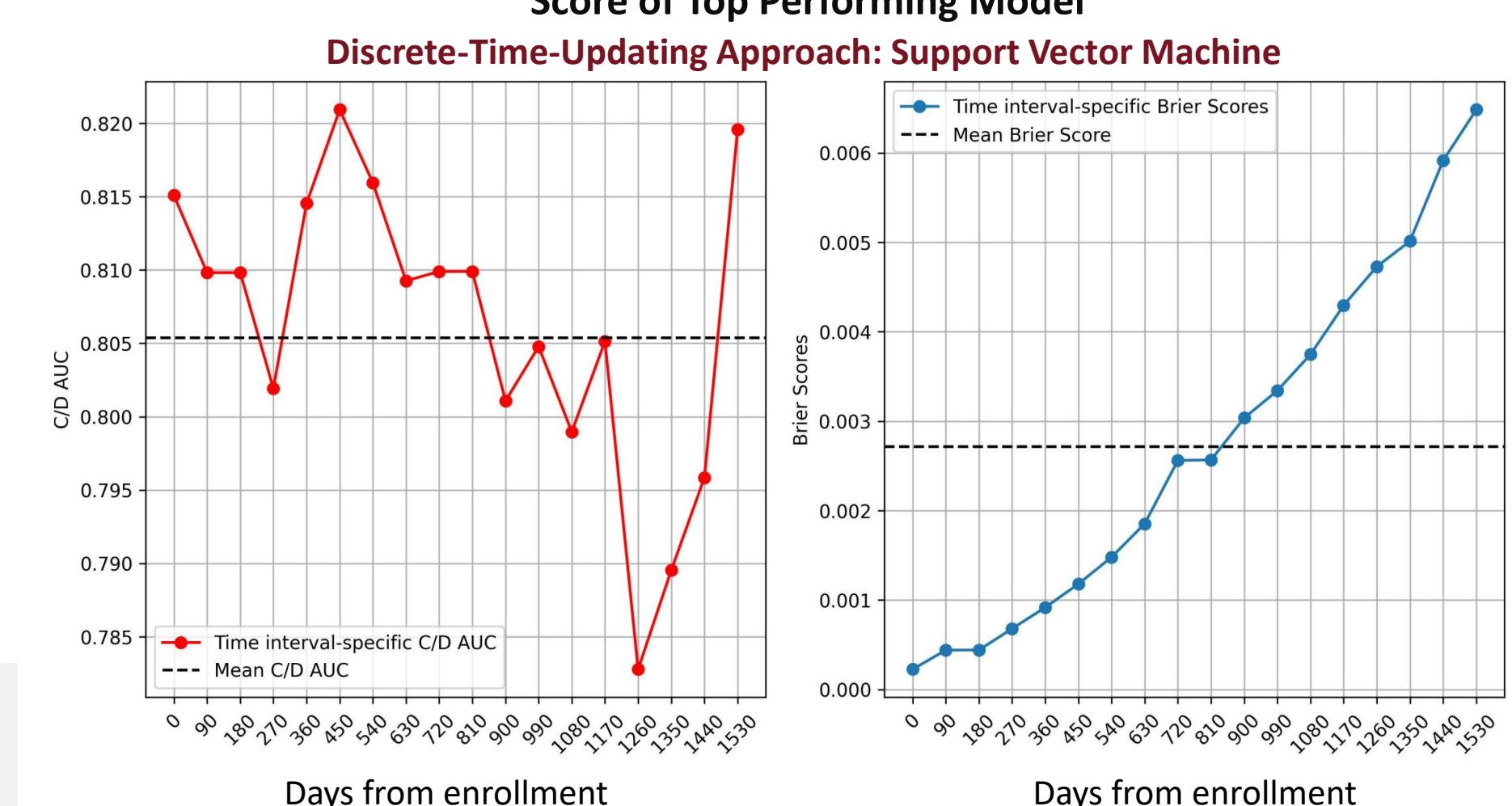
AUC = area under the receiver-operating characteristic, C/D AUC = Cumulative sensitivity/dynamic specificity area under the receiver-operating characteristic

^aTime interval included for calculation of time-dependent survival probabilities

^bTime interval included as feature

^cTime interval excluded from model training

Prediction of Stimulant Use Disorder within the next 90 days: AUC and Brier Score of Top Performing Model



CONCLUSION

- Compared to the other approaches, the discrete-time-updating approach achieved the best discrimination overall with the support vector machine-trained survival model (C/D AUC=0.8054).
- However, both the discrete-time and discrete-time-updating approach achieved similar calibration across most trained classifiers, with the support vector machine-trained models in each strategy achieving the best Brier score of 0.0027.
- Thus, this novel discrete-time-updating approach that ingests updated features should be considered alongside more traditional approaches for other time-to-event classifications tasks.

References

- Suresh K, Severn C, Ghosh D. Survival prediction models: an introduction to discrete-time modeling. *BMC Med Res Methodol*. 2022;22(1):207. doi:10.1186/s12874-022-01679-6
- Therneau TM. A Package for Survival Analysis in R. 2020. R package version 3.2-7. <https://CRAN.R-project.org/package=survival>.
- Arkansas All-Payer Claims Database. Welcome to the Arkansas All-Payer Claims Database (APCD). <https://www.arkansasapcd.net/Home/>.