
OUTPUT AN ENTIRE MARKOV TRACE
WITH 1 FORMULA IN A SINGLE CELL

The new SCAN function in Google Sheets lets us
calculate the proportion of a cohort in each state on
each cycle, using just one formula in a single cell:

= SCAN(v_init_dist, SEQUENCE(cycles), LAMBDA(v_dist, cycle, IF(cycle>1,
 MMULT(v_dist, m_tm_A), v_dist)))

Equivalently, we can use the REDUCE function, which
works in both Google Sheets and Microsoft Excel:

= REDUCE(v_init_dist, SEQUENCE(cycles), LAMBDA(m_dist, cycle, IF(cycle>1,
 VSTACK(m_dist, MMULT(INDEX(m_dist, cycle - 1,), m_tm_A)), m_dist)))

This can be quickly and easily reused across models,
reducing the complexity of model development.

Scan the QR code below to learn more.

USE 1 FORMULA TO CONDUCT
MONTE CARLO SIMULATION
OVER 1000s OF ITERATIONS

By combining the LET function with
these dynamic array functions, we can
conduct Monte Carlo simulation over
thousands of iterations with just one
formula in a single cell, outputting an
array of results for each iteration.

These simulations also run faster than
approaches that use macros, since Excel
and Google Sheets can use CPU cores in
parallel to speed up calculations.

Scan the QR code below to learn more.

A MODERN APPROACH FOR CONSTRUCTING
DECISION ANALYTIC MODELS IN MICROSOFT EXCEL

Mike Paulden, PhD Associate Professor, School of Public Health, University of Alberta, Canada

To download this poster, and to learn more about how to use this approach
in your own models, visit mikepaulden.com or scan the QR code.

You can also contact me by email at paulden@ualberta.ca

SUMMARY

Recent versions of Microsoft Excel and
Google Sheets support dynamic array
functions and variable declaration.

This allows models to be built with fewer
formulas, improving transparency and
simplifying development and validation.

VARIABLE DECLARATION

The new LET function lets us declare
variables and write code in Excel and
Google Sheets, similar to Python or R.

 numbers = [1, 2, 3, 4, 5]
 squares = [x**2 for x in numbers]
 total = sum(squares)
 print(total)

 numbers <- c(1, 2, 3, 4, 5)
 squares <- numbers^2
 total <- sum(squares)
 print(total)

=LET(numbers, {1, 2, 3, 4, 5},
 squares, numbers^2,
 total, SUM(squares),
 total)

=LET(numbers, {1, 2, 3, 4, 5},
 squares, ARRAYFORMULA(numbers^2),
 total, SUM(squares),
 total)

EE73

