

HASSO PLATTNER INSTITUTE FEDERAL UNIVERSITY OF PARAIBA

Cognitive Impairment Detection through Recurrent Neural Networks and Mobile Health Technologies

Melissa Ouellet¹, Clauirton Siebra²

¹Digital Health Cluster, Hasso Plattner Institute, Potsdam, Germany

²Informatics Center, Federal University of Paraiba, João Pessoa, Brazil

Model	AUROC	AUPRC	Sensitivity	Specificity
Logistic Regression	0.570 ± 0.014	0.288 ± 0.018	0.624 ± 0.015	0.475 ± 0.008
Random Forest Classifier	0.582 ± 0.016	0.304 ± 0.026	0.574 ± 0.017	0.545 ± 0.007
Gradient Boosting Classifier	0.586 ± 0.016	0.308 ± 0.027	0.541 ± 0.014	0.582 ± 0.011
Standard Recurrent Neural Network	0.776 ± 0.042	0.495 ± 0.044	0.758 ± 0.063	0.671 ± 0.044
Long Short-Term Memory	0.956 ± 0.003	0.874 ± 0.008	0.907 ± 0.033	0.862 ± 0.037
Gated Recurrent Unit	0.966 ± 0.002	0.898 ± 0.002	0.922 ± 0.038	0.878 ± 0.035

OBJECTIVE

Investigate the potential of leveraging mobile health technologies and recurrent neural networks (RNNs) to detect cognitive impairment (CI) in individuals

99

METHODOLOGY

- 2011-2014 National Health and Nutrition Examination Survey
- Cognitive tests: Immediate and Delayed Recall, Animal Fluency, and Digital Symbol Substitution
 - Scores converted to z-scores and summed
 - Cognitive impairment below lowest quartile, cutoff: -2.20
- Accelerometer data aggregated to hourly levels, with features:
- Triaxial Acceleration (mean, SD, min, max, median, kurtosis, entropy) and day of the week
- Sleep, Sedentary, Light, Moderate, Vigorous activities
- Machine Learning and Deep Learning models:
- Logistic, Random Forest, Gradient Boosting
- Standard RNN, Long Short-Term Memory, Gated Recurrent Unit (GRU)
- Model safeguards:
- Adjusted for class imbalance
- Prevented data leakage across uses
- Evaluated using Monte Carlo cross-validation on a 20% test set

RESULTS

- Sample:
- 2,559 individuals, aged 60–80
- 24.6% cognitively impaired
- 429,912 hourly data points over 7 days
- Top Performing Model:
 - GRU: AUC=0.966 \pm 0.002, mean \pm std. dev.
- Behavioral patterns:
 - More sleep and less moderate-to-vigorous activity
 - Light and sedentary activity having the greatest impact on AUC, 18.8% and 16.8% respectively
- Temporal trends:
- GRU model preserved hourly patterns
- Room for improvement in capturing daily and weekly trends

CONCLUSION

- Identified distinct behavioral activity patterns in CI sufferers and their impact on model performance
- Highlighted the potential of wearables and sequence modeling to uncover behavioral patterns linked to CI.
- Findings offer opportunities to enhance predictive models and develop improved intervention strategies.