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Methods

Introduction

Abstract

The modern era of targeted therapies and narrowed 

indications may be a benefit for patients but can 

make indirect comparisons of health technologies 

difficult. Applications of Matching-Adjusted Indirect 

Comparison (MAIC) may attempt to match many 

characteristics, eroding effective sample size (ESS), 

or failing entirely to find a solution. The objective of 

this research is to determine whether regularization of 

MAIC is a viable solution to these challenges. The 

results of statistical simulation show that regularized 

MAIC involves a bias-variance tradeoff, with smaller 

errors for the regularized weights and better ESS 

compared to the standard method. Moreover, if the 

two cohorts have large imbalances, the regularized 

method succeeds where the standard method fails.

• MAIC1 is a method of indirect treatment 

comparison in which patients from one trial are 

weighted so that their average characteristics 

match the average characteristics reported by 

the competitor. A weighted comparison of 

outcomes under different treatments follows.

• The goal is to account for differences in 

sampling between the two trials that would 

confound the comparison.

• Matching many characteristics is challenging 

and reduces the information available for 

comparison (small ESS)2. In extreme cases, 

MAIC can fail entirely.

• MAIC weights patients in Trial 1 (treatment A) 

to appear as though they were sampled 

according to Trial 2 (treatment C).

• Patient characteristics to be balanced are those 

which modify the treatment effect, and those 

which modify the outcome if the comparison is 

not anchored to a common treatment B.

Standard MAIC1

MAIC uses the concept of propensity score 

weighting, but only moments are available from 

Trial 2. The propensity score is estimated using:

logit 𝑃 𝑇𝑖 = 2 𝑋𝑖 = 𝛼0 + 𝑋𝑖𝛼

where 𝑋𝑖 is a vector of covariates to be matched 

for patient 𝑖, 𝛼0 is an intercept term, and 𝛼 is the 

vector of coefficients to be estimated.

Weights are proportional to odds of being in trial 2:

𝑤𝑖 ∝
𝑃 𝑇𝑖 = 2 𝑋𝑖

1 − 𝑃 𝑇𝑖 = 2 𝑋𝑖

The ො𝛼 is found by moment matching. After some 

simplification, this amounts to solving

Σ𝑖exp ෨𝑋𝑖 ො𝛼 ෨𝑋𝑖 = 0

where ෨𝑋 are the covariates centered on average 

values from trial 2. This is equivalent to optimizing

𝑔 ො𝛼 = Σ𝑖exp ෨𝑋𝑖 ො𝛼

Regularized MAIC

The coefficients ො𝛼 are shrunk towards zero. 

Note that when ො𝛼 = 0, there is no weighting.

• Ridge: minimize 𝑔 ො𝛼 +
𝜆
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2 given 𝜆

• Lasso: minimize 𝑔 ො𝛼 + 𝜆 σ𝑗 ො𝛼𝑗  given 𝜆

• Elastic net: minimize 𝑔 ො𝛼 + 𝜆1 σ𝑗 ො𝛼𝑗 +
𝜆2
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Trials 1 and 2 have different sampling schemes. To compare 

treatment A vs C, MAIC weights patients from Trial 1 to appear 

on average as though they were sampled like those in Trial 2.

Results

Regularized MAIC performs as expected 

Across simulations, the SMD ≤ 0.1 strategy led to 

reduced root mean squared error (RMSE) and 

increased ESS at the expense of bias. This tradeoff 

could be tailored to a given situation as needed. 

Individual simulations show that significant gains in 

ESS can be made under modest regularization.

Statistical simulation

Simulations included 100 patients in each trial, 

with 10 patient characteristics to match.

• 𝑋𝑖 ∼ 𝑁(0, 1) in Trial 1

• 𝑋𝑖 ∼ 𝑁(𝜇, 1) in Trial 2, with 

• 𝜇 ∼ 𝑁(0, 0.1) difference between trials

Two hundred simulations were performed. 𝜆 was 

set so that the standardized mean difference (SMD) 

was less than 0.1 for all patient characteristics3,4.

Conclusions

MAIC is often applied in difficult situations with 

limited alternatives, and uncertainty can lead to 

matching many confounders, eroding effective 

sample size or precluding a solution.

• Regularization is an automatic approach which 

retains ESS and has smaller RMSE.

• Regularized MAIC can work in tough cases 

where standard MAIC fails

• The general machinery is well-understood from 

other regression contexts5
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Simulation with 𝜇 ∼ 𝑁(0, 0.25) can result in failure 

of the standard MAIC. Regularized MAIC has no 

issue and performs well in these cases.

Left: Results of a single simulation with a ridge penalty. 

The gray region shows SMD ≤ 0.1, and the dashed line is the 

resulting 𝜆 value. NB: 𝜆 = 0 corresponds to standard MAIC.

Above: A single simulation in which standard MAIC fails. As 

expected, the lasso results in a solution.

The regularized MAIC methods have improved root-mean-

squared-error (RMSE) performance compared to standard 

MAIC, and meaningfully improved ESS as well.
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