The Role of Productivity Measures in Economic **Evaluations of Migraine** Therapies

Amy Wu, Paige Ngo, Daniel Gratie, Lorie Mody, Richard H Stanford AESARA Inc. Chapel Hill, NC, USA

BACKGROUND

- Migraine is a common neurological condition and a leading cause of disability worldwide, frequently affecting individuals during their most productive working years¹
- In addition to direct healthcare costs, migraine imposes a substantial indirect economic burden on society through lost productivity²
- The ISPOR value flower recognizes productivity as a key component of value in health economic evaluations, reflecting its broader societal impact³
 - Approaches to measuring productivity losses and gains vary across studies, which may influence the estimated cost-effectiveness of migraine interventions

OBJECTIVE

To assess economic evaluations of migraine therapies that include productivity measures, examine methods for quantifying productivity, and evaluate their impact on incremental cost-effectiveness ratios (ICERs)

METHODS

To identify relevant studies, Embase was searched for English-language economic evaluations of migraine therapies including productivity inputs

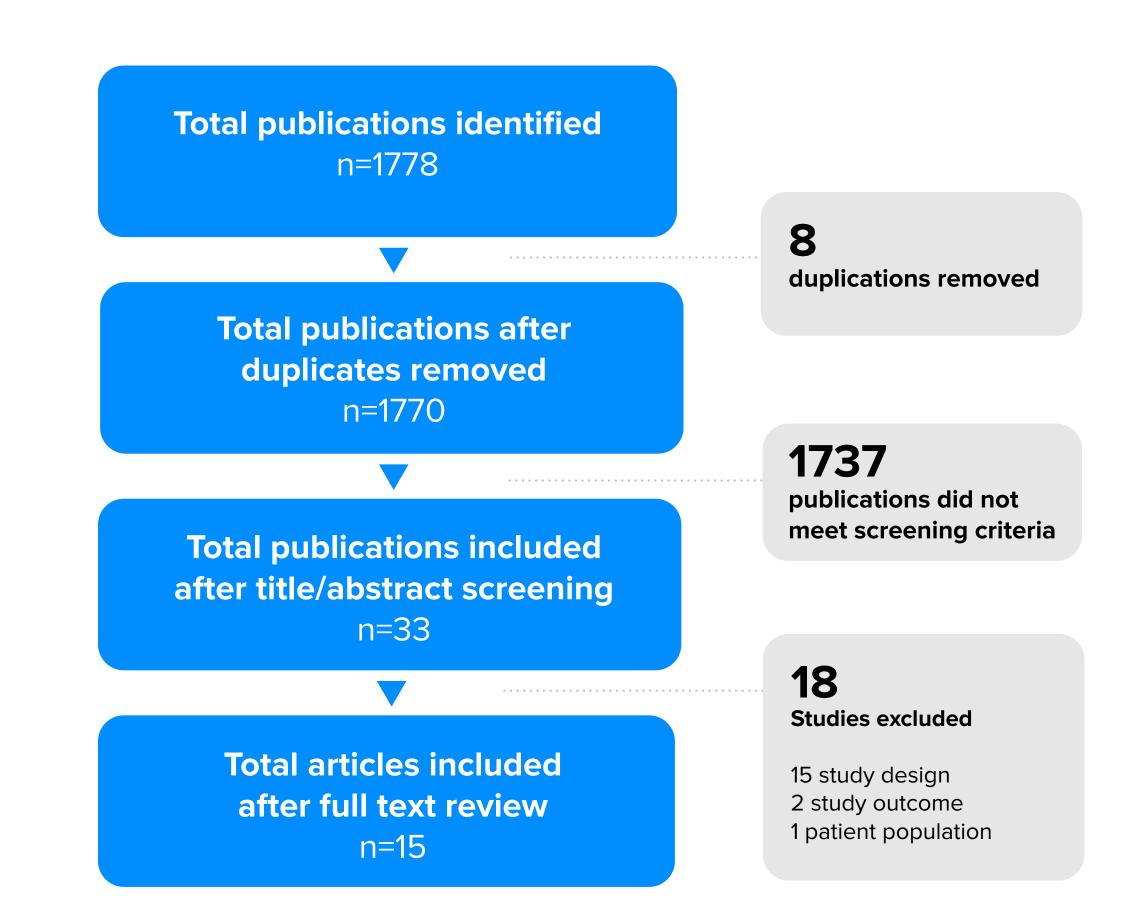
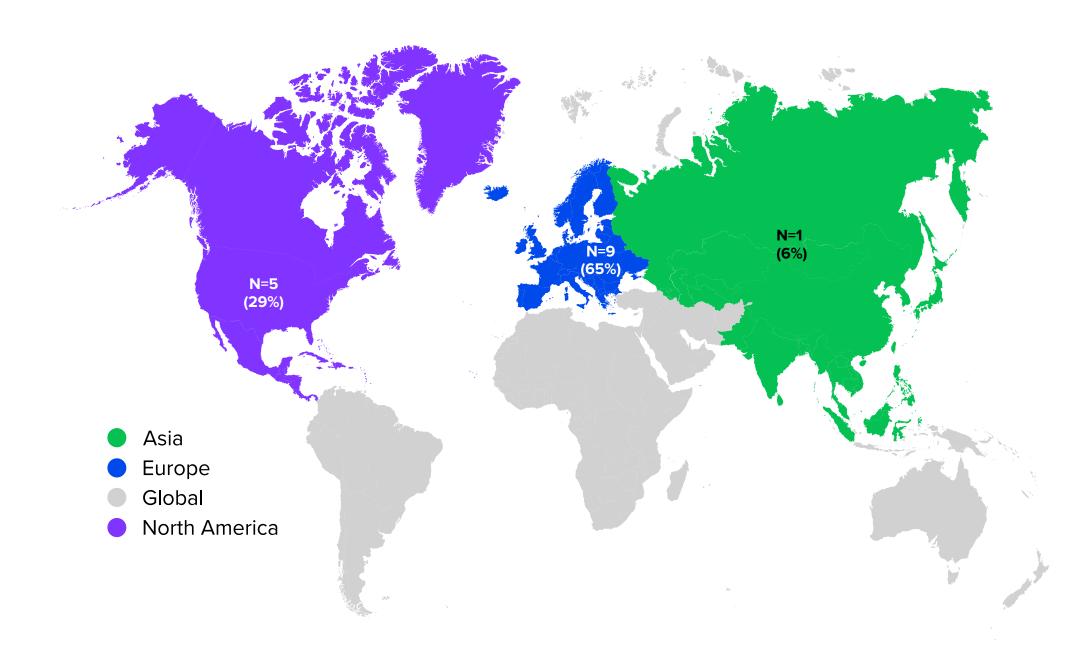

Two reviewers were used for title and abstract screening and one reviewer for full-text screening (Table 1). Data were extracted by a single reviewer (Figure 1)

Table 1: Screening Criteria

Study Characteristics	Screening Criteria	
Patient Population	Patients with migraine	
Intervention	Therapeutic interventions for migraine	
Comparator	Alternative treatments (eg, placebo, supportive care, usual care)	
Outcome	 Model type Model perspective Time horizon Data source for productivity assessment (eg, self-reported questionnaires such as the WPAI Approach to valuing productivity loss (eg, human capital method, friction cost method) Difference in productivity-related costs between intervention and comparator arm Inclusion of productivity in sensitivity analyses and associated impact Cost-effectiveness conclusion (ie, whether the intervention was deemed cost-effective) ICER 	
Study Type	CBAsCEAsCUAs	
Time frame	January 1, 2014 to September 30, 2024	
Geography	Global	

CBA: Cost-benefit analysis; CEA: Cost-effectiveness analysis; CUA: Cost-utility analysis; ICER: Incremental costeffectiveness ratio; WPAI: Work Productivity Activity Impairment

Figure 1: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) diagram

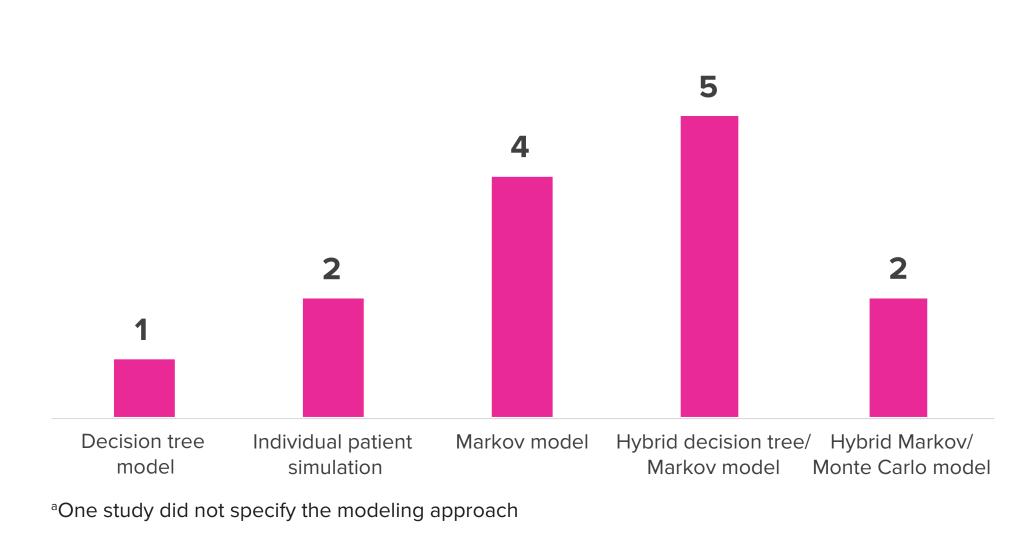


RESULTS

Study Characteristics

A majority of studies were conducted in Europe, followed by North America (Figure 2)

Figure 2: Country Perspective of Included Economic **Evaluations**

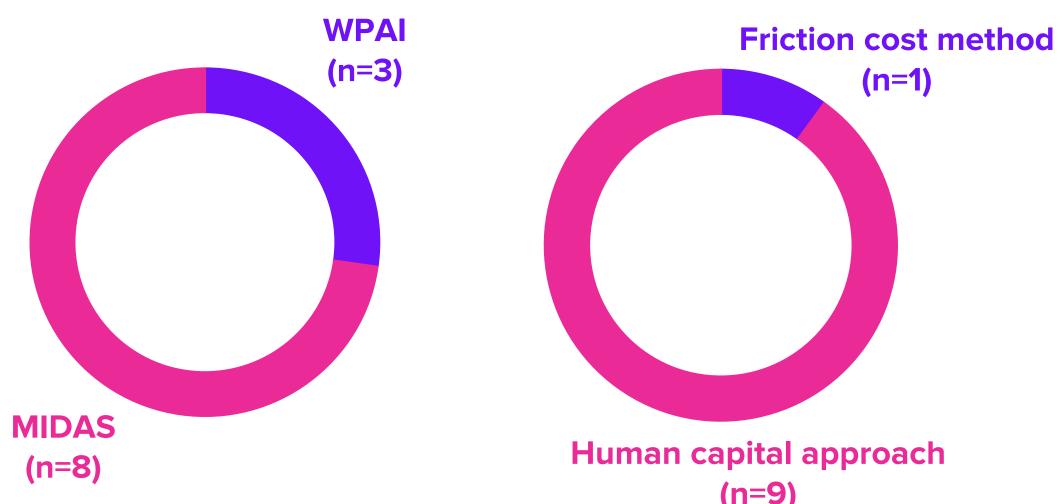


out of 15 studies were industry sponsored

Model Characteristics

- The majority of the economic evaluations were conducted as cost-effectiveness analyses (n=13), while only 2 studies were cost-benefit analyses
- Nearly half of the studies (7/15) utilized hybrid modeling approaches, including combinations of decision trees with Markov models (n=5) and Markov models with Monte Carlo simulations (n=2), as shown in Figure 3

Figure 3: Number of Studies by Model Type^a (n=14)



Methods for Measuring Productivity

- Eleven studies reported the tools used to measure productivity. Productivity was most commonly assessed using the Migraine Disability Assessment (MIDAS) scale (n=8) and the WPAI questionnaire (n=3), with data sourced from real-world surveys and clinical trials (Figure 4)
- Ten studies reported their methods for estimating total indirect costs. The majority (n=9) used the human capital approach, while only 1 study employed the friction cost method (Figure 5)

Figure 4: Productivity **Measurement Tools Used in** Studies (n=11)

Figure 5: Approaches to **Indirect Cost Estimation** (n=10)

MIDAS: Migraine Disability Assessment; WPAI: Work Productivity Activity Impairment

Impact of Societal Perspective on ICERs

Shifting from a societal perspective (including indirect costs) to a payer perspective (excluding indirect costs) led to higher ICERs in 4 studies, though ICERs remained cost-effective under both perspectives (Table 2)

Table 2: Impact of Perspective on ICERs in Economic Evaluations

Author Year	Societal Perspective ICER (including indirect costs)	Payer Perspective ICER (excluding indirect costs)
Mahon 2021 ⁴	Dominant —	→ 201,871 SEK/QALY
Pozo-Rosich 2024 ⁵	Dominant —	
Skroumpelos 2021 ⁶	Dominant —	÷ £16,716/QALY
Sussman 2018 ⁷	\$15,360/QALY —	→ \$65,720/QALY
Yesentharao 2022 ⁸	Dominant —	→ Dominant

ICER: Incremental cost-effectiveness ratio; QALY: Quality-adjusted life year; SEK: Swedish Krona

Impact of Excluding Productivity on ICERs

studies showed higher ICERs in scenario analyses when productivity was excluded compared to the base case where it was included

Sensitivity Analysis Drivers

studies identified lost productivity (eg, missed workdays or impairment) as a top-3 driver in sensitivity analyses

CONCLUSION & NEXT STEPS

This review shows that incorporating productivity can meaningfully impact cost-effectiveness outcomes, highlighting the need for its consistent inclusion in migraine economic evaluations

Adopting a societal perspective that includes productivity costs may provide a more comprehensive understanding of the value of migraine therapies

These findings highlight the need for further research to clarify how the inclusion of productivity measures influences healthcare decision-making

REFERENCES

- 1. Dong L, Dong W, Jin Y, et al. The global burden of migraine: a 30-year trend review and future projections by age, sex, country, and region. Pain Ther. 2025;14(1):297-315. doi:10.1007/s40122-024-00690-7
- 2. Burton WN, Conti DJ, Chen CY, et al. The economic burden of lost productivity due to migraine headache: a specific worksite analysis. J Occup Environ Med. 2002;44(6):523-529. doi:10.1097/00043764-200206000-00013
- 3. Lakdawalla DN, Doshi JA, Garrison LP Jr, et al. Defining elements of value in health care a health economics approach: an ISPOR special task force report [3]. Value Health. 2018;21(2):131-139. doi:10.1016/j.jval.2017.12.007
- 4. Mahon R, Lang A, Vo P, et al. Cost-effectiveness of erenumab for the preventive treatment of migraine in patients with prior
- treatment failures in Sweden. Pharmacoeconomics. 2021;39(3):357-372. doi:10.1007/s40273-020-00996-2 5. Pozo-Rosich P, Poveda JL, Crespo C, et al. Is erenumab an efficient alternative for the prevention of episodic and chronic
- migraine in Spain? Results of a cost-effectiveness analysis. J Headache Pain. 2024;25(1):40. doi:10.1186/s10194-024-01747-w 6. Skroumpelos A, Freddi M, Akicicek H, et al. PND23 Cost-effectiveness of fremanezumab from a societal perspective in
- England. Value in Health. 2021;24(1):S162-163. https://doi.org/10.1016/j.jval.2021.04.807 7. Sussman M, Benner J, Neumann P, et al. Cost-effectiveness analysis of erenumab for the preventive treatment of
- episodic and chronic migraine: Results from the US societal and payer perspectives. Cephalalgia. 2018;38(10):1644-1657.

8. Yesantharao PS, Lee E, Klifto KM, et al. A Markov analysis of surgical versus medical management of chronic migraines. Plast Reconstr Surg. 2022;149(5):1187-1196. doi:10.1097/PRS.0000000000009048

ABBREVIATIONS IN TABLES AND FIGURES

CBA. Cost-benefit analysis: CEA. Cost-effectiveness analysis; CUA, Cost-utility analysis; ICER, Incremental cost-effectiveness ratio; ISPOR, International Society for Pharmacoeconomics and Outcomes Research; MIDAS, Migraine Disability Assessment; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses; QALY, Quality-adjusted life year; SEK, Swedish Krona; WPAI, Work Productivity and Activity Impairment.

CONTACT INFORMATION

Health Outcomes and Market Access Fellow, AESARA E-mail: amy.wu@aesara.com Presented at: ISPOR International Conference,

ACKNOWLEDGEMENT

May 13-16, 2025, Montreal, Quebec, CA

Kenneth W. K. Wu developed the graphics for