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CONCLUSIONS

▪ Recognizing that the decision to select the most appropriate NMA model 

for estimating comparative efficacy occurs well before generating ICER 

results from various models, this exercise helps to inform the broad range 

of final CEA conclusions where ICERs are sensitive to the selected NMA 

method

▪ It was found that while keeping all other CEA input data equal, across the 

NMA models, the derived relative treatment effects and the resultant 

ICERS were very different and informed a broad range of possible cost-

effectiveness interpretations

▪ Considering the limitations described above, it is essential to evaluate the 

advantages and disadvantages unique to each NMA type. This 

assessment should consider the core elements of the analysis, such as 

the validity of the PH assumption, the shape of the trial KM curves and 

hazard plots, the likely user’s time investment, acceptability to decision 

makers and the accessibility of clinical expertise
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BACKGROUND

▪ Emerging flexible time-varying network meta-analysis (NMA) 

methods can more precisely estimate the survival improvements 

of novel therapies compared with existing treatments1, 2

▪ Precedents in the literature often highlight advancements in 

immune-oncology, with novel biological mechanisms of action 

requiring more flexible models to maximally capture long-term 

survival benefits and provide plausible extrapolations3

▪ Time-varying NMA models can mitigate statistical limitations 

when the proportional hazard (PH) assumption for comparing 

survival curves is violated 

▪ However, these advanced methods remain underutilized in North 

American regulatory and reimbursement environments compared 

with UK and EU practice, despite their potential to maximally 

capture long-term benefits of a new therapy.4,5 Also, it is 

recognized that health technology assessment (HTA) guidance is 

currently limited for time-varying NMA in terms of model 

selection, NMA implementation in cost-effectiveness models 

(CEMs), and the assessment of impact of the NMA estimates on 

CEM results

OBJECTIVES

▪ We aimed to demonstrate how application of various time-

varying NMA methods can impact final estimates in a treatment 

cost-effectiveness analysis (CEA), representing these differences 

with associated incremental cost-effectiveness ratios (ICERs)

▪ The goal was to provide transparency in discussing the 

complexities of applying these emerging, time-varying NMA 

methods, sharing key technical and clinical assumptions, 

advantages, and limitations

METHODS

▪ We revisited a recent multiple technology appraisal (ID3760) 

from the UK’s National Institute for Health and Care Excellence 

(NICE) in advanced renal cell carcinoma, where PH violations for 

progression-free survival (PFS) and overall survival (OS) curves 

were previously identified.6 The appraisers chose not to apply 

time-varying NMA results in the CEA, stating difficulty in 

interpretating their unintuitive results. NICE submissions are 

renowned for their high-quality reporting and methodological 

rigor, positioning NICE as a leader in advancing HTA 

methodologies7

▪ We applied available, updated clinical trial data to the NICE base 

case, while creating different CEA scenarios by only changing 

the type of NMA model estimating PFS and OS hazard ratios 

(HRs). Time-varying NMA methods included multivariate 

parametric, fractional polynomial (FP), restricted cubic spline 

(RCS), and piecewise exponential (PWE) NMA. Resultant ICERs 

were compared with CEA estimates using constant (Cox PH) 

NMA.

Figure 3. Survival estimates from NMA overlayed with KM curves (best 

fitted models)* (a) PFS  L+P (b) PFS  N+I (c) PFS  cab (d) OS  L+P (e) OS  

N+I (f) OS  cab

Figure 2. HR from NMA (best fitted models)* (a) PFS  L+P (b) 

PFS  N+I (c) PFS  cab (d) OS  L+P (e) OS  N+I (f) OS  cab
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LIMITATIONS 

▪ NMA model selection: 

▪ Nuanced decisions for each NMA type, such as powers and time 

intervals for FP NMA, knot placement for RCS NMA, and time breaks 

for PWE NMA, introduced uncertainty in the decision making. 

Different model approaches are not easily comparable, and clinical 

judgment of these additional models outside of the precedent NICE 

decision problem was not currently feasible

▪ Forty-eight time-varying NMA models were analyzed for each 

endpoint, requiring significant computational effort. Testing the best 

fitting FP and parametric NMAs was time-consuming due to 

numerous, reasonable options for possible model inputs to be tested. 

Convergence was challenging for FP NMA, especially for 2nd order 

models. PWE NMAs were simpler to implement but may lack clinical 

plausibility due to step-wise HRs

▪ Early-cycle effect: Implausibly large HRs from some models led to zero 

survival estimates in the CEA for the first model cycle. Therefore, no 

treatment effect was applied in the first month to remove implausible 

estimates

▪ Anchoring survival: CEA typically relies on pivotal trials with IPD, while 

ITC estimates for HTAs use aggregate data from comparator trials. In this 

study, NMA-derived HRs were anchored on parametric survival 

extrapolation of sunitinib from the CLEAR trial. This CEA approach 

requires varied considerations for deriving anchored survival estimates

▪ Uncertainty analysis: The only scenario analyses conducted were to  

assess uncertainty in selection of the NMA model. In the future, it would 

be beneficial to conduct probabilistic sensitivity analysis to explore 

different settings of variance of the NMA models. It would also be 

interesting to quantify the uncertainty across different models and its 

resulting impact on ICERs and/or decision making21

RESULTS

Network meta-analysis

Cost-effectiveness analysis

▪ To reflect TA858, a three-state partitioned survival model was constructed. All cost, healthcare resource use (HCRU), and 

utility inputs from TA858 were applied in the model, with costs inflated to 2023/24. Time to treatment discontinuation was 

assumed to be equal to PFS due to data unavailability. As sunitinib was the common node in the network, when comparator 

time-varying HRs were generated from an NMA method, these were applied onto the modeled sunitinib arm from CLEAR to 

derive survival estimates over time. For sunitinib the log-normal and generalized gamma models were used for OS and PFS, 

respectively, due to a combination of their good visual fit and clinical plausibility

▪ Time-varying HRs were derived from the best fitting models from each of the various NMA results: 

▪ For parametric NMA, survival estimates for all three comparators and pooled sunitinib were generated directly from NMA 

parameters, and the hazards were compared in a pairwise fashion for each comparator against sunitinib over time

▪ For RCS NMAs, survival estimates for all three comparators were generated directly from the NMA parameters

▪ For FP NMAs, computed from d0, d1, and d2 parameters using equation from Jansen 201117

▪ For PWE NMAs, obtained directly as statistical outputs

▪ Costs and QALYs were summed across a 40-year horizon for each comparator with a 3.5% discount. Pairwise comparisons 

were conducted between L+P against N+I and cabozantinib where incremental costs and QALYs were computed. The ICER 

was then estimated by dividing the incremental costs by the incremental QALYs

Population
Untreated advanced RCC: Intermediate/poor risk subgroup 

(IMDC criteria) 

Interventions • Lenvatinib + pembrolizumab (CLEAR)8

Comparator*
• Cabozantinib (CABOSUN)9

• Nivolumab + ipilimumab (CheckMate 214)10

Outcomes
• Progression-free survival (PFS)

• Overall Survival (OS)

Setting:CEA

• Incremental cost per QALY 

• NHS and PSS perspective

• Three-state PSM

Table 1. Study Scope from 2022 NICE MTA (TA858, ID3760)6

Key: IMDC, International Metastatic Renal Cell Carcinoma; MTA, multiple technology assessment; NHS, National Health 

Service; NICE, National Institute for Health and Care Excellence; NMA, network meta-analyses; OS, overall survival; PFS, 

progression-free survival; PSS, Personal Social Services; PSM, partitioned survival model; QALY, quality-adjusted life year; 

RCC, renal cell carcinoma.

Note: *Sunitinib is used as a common comparator to connect the network but would not be a comparator of interest for the 

intermediate/poor risk subgroup (see Figure 1)

Table 2. Incremental cost-effectiveness results versus L+P based on various NMA approaches (best fitted models)

Table 3. Incremental cost-effectiveness results versus L+P based on various NMA approaches (alternative models)

Cost-effectiveness analysis

▪ Table 2 and Table 3 show resultant ICERs from the best fitted and alternative (second best selection) models from each NMA 

method, respectively

NMA model/Treatment Versus Nivolumab + ipilimumab versus Cabozantinib

Incremental cost Incremental QALY ICER Incremental cost Incremental QALY ICER

PWE** £114,615 -0.830 L+P dominated £10,485 -0.366 L+P dominated

RCS** £99,602 -1.175 L+P dominated £30,324 -0.321 L+P dominated

Parametric** £120,393 -0.568 L+P dominated £63,799 0.389 £164,123

NMA model/Treatment versus Nivolumab + ipilimumab versus Cabozantinib

Incremental cost Incremental QALY ICER Incremental cost Incremental QALY ICER

Constant £106,764 0.334 £319,332 -£4,375 0.560 L+P dominates

PWE * £115,023 -0.896 L+P dominated £10,463 -0.465 L+P dominated

RCS* £99,313 -1.172 L+P dominated £33,776 -0.268 L+P dominated

First-order FP* £79,907 -1.915 L+P dominated -£32,442 -1.366 L+P is inferior

Second-order FP* £70,624 -2.249 L+P dominated -£12,777 -3.208 L+P is inferior

Parametric* £122,739 0.015 £8,442,537 £38,624 0.823 £46,933

Note: *Best fitted models for OS: piecewise (time break = 12 months); RCS (1 knot); first-order FP (P1=0.5); second-order FP (P1=0.5, P2=0); parametric (log-normal). For PFS:  piecewise (time 

break= 6, 12 months); RCS (2 knots); first-order FP (P1-0.5); second-order FP (P1=0.5, P2=0); parametric (generalized gamma).

**Alternative fitted models for OS: piecewise (time break = 6, 12 months); RCS (2 knots); parametric (log-logistic). For PFS:  piecewise (time break= 12 months); RCS (3 knots); parametric (log-

normal). For FP NMA, there is no recommendation on alternative models due to the convergence issue and implausibility of the extrapolations.

Network meta-analysis

▪ Patient-level data for intermediate to poor risk groups were 

reconstructed from published PFS and OS KM graphs11,12

▪ Given the limited evidence base with only one trial per treatment 

comparison, a Bayesian NMA framework using fixed effects models 

was applied12-14

▪ Best fitting NMA models were determined based on NICE 

recommended criteria for survival extrapolation, including visual fit 

to KM graphs, statistical parsimony (e.g. AIC, BIC, DIC), biological 

plausibility as discussed in ID3760, and convergence diagnostics15 

Multivariate parametric NMA (2-step)16

▪ Seven parametric distributions were used for parametric NMA 

(exponential, Weibull, gamma, Gompertz, generalized gamma, log-

normal, log-logistic). Parametric NMA requires the same survival 

distribution to be fitted for all treatment arms across the network. 

The accuracy of this model hinges on the chosen distribution: a mis-

specified functional form may restrict the hazard shape and fail to 

capture complex features seen in smoothed hazard plots

Fractional polynomial (FP) NMA17

▪ First and second order FP NMA models were fitted to the data. The 

choice of powers included all combinations of {-2, -1, -0.5, 0, 0.5, 1, 

2}, giving a total of 35 models (7 and 28 for first and second order 

FP, respectively). All treatments are assumed to follow the same 

polynomial functional form (within the same set of pre-specified 

power terms) for their baseline hazard, with differences captured by 

treatment-specific coefficients

Restricted cubic spline (RCS) NMA18

▪ 1-, 2-, and 3-knot RCS NMA models were fitted using equally 

distributed knots specific to each treatment arm based on the log of 

uncensored survival times. RCS methods assume that the log 

cumulative hazard function (i.e. the baseline hazard of each trial) 

can be appropriately and smoothly modeled with splines across 

time, and any non-PH can be captured through time interactions

Piecewise exponential (PWE) NMA19

▪ PWE NMA assumes treatment effects for each of the time intervals 

are represented by constant HRs, following exponential 

distributions. Treatment effects are assumed to be constant on the 

hazard scale within each time interval. Three PWE models were 

used with different time breaks: (1) 6 months, (2) 12 months, (3) 6 

and 12 months

Constant NMA20

▪ Time-constant semi-parametric (Cox PH) NMA models assume that 

the hazard rate is proportional over time. For the purpose of this 

exercise, constant NMA results were used for comparison

Key: AIC, Akaike information criterion;  BIC, Bayesian information criterion; Cab, cabozantinib; DIC, deviance information criterion; ICER, incremental cost-effectiveness ratio; FP, fractional polynomial; HTA; health technology assessment; LY, life year; L+P, lenvatinib + pembrolizumab; MTA, multiple technology assessment; 

NICE, National Institute for Health and Care Excellence; NMAs, network meta-analyses; N+I, nivolumab + ipilimumab; OS, overall survival; PFS, progression-free survival; PH, proportional hazard; PWE, piecewise exponential; QALY, quality-adjusted life year; RCS, restricted cubic spline. 
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Figure 1. ID3760: Network diagram for the intermediate/poor risk 

subgroup (PFS and OS)
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