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BACKGROUND

Systematic literature reviews (SLRs) are foundational for
evidence synthesis in medical research but are often time-
intensive and laborious. On average, completing a
traditional SLR can take between 12 and 18 months and
typically involves a team of at least three researchers.’
Large Language Models (LLMs) offer potential for
automating SLR tasks such as screening, data extraction,
and bias assessment.

However, the feasibility and performance of these models
in conducting different steps of SLRs remain insufficiently
documented.

OBJECTIVE

To evaluate the performance of LLMs across key tasks in the
SLR process by reviewing recently published studies.

METHODS

We conducted a targeted literature review of studies applying
LLMs in SLR workflows, focusing on performance metrics
across multiple review tasks.

Study Identification: 25 studies published between Jan 2023
and Jan 2025 %26 (Figure 1)

Figure 1: PRISMA Diagram for the Targeted Review of Studies
applying LLM in SLR steps
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KEY FINDINGS

O LLMs show strong potential in automating key
components of SLRs, particularly in early
screening and data extraction.

O While different LLMs exhibit varying strengths
and limitations across tasks, no study has
comprehensively evaluated their performance
across all SLR steps using Al.

[« hybrid approach that leverages the strengths
of multiple LLMs may improve the overall efficiency
and accuracy of SLRs.

LLMs Assessed: GPT, Gemini, Bert, Claude and others such
as Google PalLM 2 and Meta Llama 2

SLR Tasks Analyzed: Title and abstract screening, full-text
screening, data extraction and bias assessment

Performance Metrics: Sensitivity, specificity, accuracy, and
inter-rater agreement (e.g., kappa score).

RESULTS

LLMs Assessed

Among all LLMs, GPT was the most frequently evaluated LLM
across studies (Figure 2).

Figure 2: Distribution of LLMs Evaluated (among 33 independent
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O Performance of LLMs varies by task,
suggesting that some steps in the SLR process
may be more suitable for automation than others.

O Human oversight remains essential for
conducting Al-assisted SLRs.

O Further research is needed to fully explore the
capabilities and limitations of LLMs within SLR
workflows.

Performance Evaluation

Among all SLR steps, title and abstract screening using LLMs
was the most frequently evaluated one across studies (Figure
3).

Figure 3: Distribution of SLR Tasks Evaluated (among 18

independent evaluations)
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Bias Assessment

LLMs demonstrated strong performance across various

systematic review tasks (Table).

« Title screening: Sensitivity 94.3%-96.2%); specificity 85.5%—
99.6%.

* Abstract screening: Accuracy 80%-97.5%; sensitivity 62%—
95%; specificity 65%-98.7%.
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* Full-text screening: Accuracy 87%; sensitivity 71.4%;
specificity 93.8%.

» Data extraction: Accuracy 67%-96.3%; sensitivity 36%-—
96.2%); specificity >80%.

* Bias assessment: Strong agreement with human reviewers
(kappa >0.89 for abstracts; 0.65 for full-text).

Table: Performance of LLMs Across SLR Tasks

Best Performing q Performance
Task Model Metric Range
Title, GPT35 Sensitivity 94.3%-96.2% '8
Sereening ’ Specificity 85.5%-99.6% '8
" GPT-4 (Acc, Accuracy 80%-97.5% 2226
Scrgerlfﬁg Spec) Sensitivity 629%-95% 23.26
GPT-3.5 (Sens) Specificity 65%-98.70% 22,25
Accuracy 87% 22
S’E:L:géﬁﬁg GPT-4 Sensitivity 71.4% 2
Specificity 93.8% 22
Biiia Claude 2 (Acc, Accuracy 67%-96.3% 1417
Extraction Sens) Sensitivity 36%-96.2% 1417
CIPIFE () Specificity >80% 17
Kappa
i >0.89 22
AsseiaS GPT-4 (Abstracts)
Kappa (Full-text) 0.65 22
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