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• Systematic literature reviews (SLRs) are foundational for 
evidence synthesis in medical research but are often time-
intensive and laborious. On average, completing a 
traditional SLR can take between 12 and 18 months and 
typically involves a team of at least three researchers.1

• Large Language Models (LLMs) offer potential for 
automating SLR tasks such as screening, data extraction, 
and bias assessment.

• However, the feasibility and performance of these models 
in conducting different steps of SLRs remain insufficiently 
documented.
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OBJECTIVE
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To evaluate the performance of LLMs across key tasks in the 
SLR process by reviewing recently published studies.
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METHODS

We conducted a targeted literature review of studies applying 
LLMs in SLR workflows, focusing on performance metrics 
across multiple review tasks.
Study Identification: 25 studies published between Jan 2023 
and Jan 2025 2-26 (Figure 1) REFERENCES

KEY FINDINGS

 LLMs show strong potential in automating key 
components of SLRs, particularly in early 
screening and data extraction.

 While different LLMs exhibit varying strengths 
and limitations across tasks, no study has 
comprehensively evaluated their performance 
across all SLR steps using AI.

 A hybrid approach that leverages the strengths 
of multiple LLMs may improve the overall efficiency 
and accuracy of SLRs.

 Performance of LLMs varies by task, 
suggesting that some steps in the SLR process 
may be more suitable for automation than others.

 Human oversight remains essential for 
conducting AI-assisted SLRs.

 Further research is needed to fully explore the 
capabilities and limitations of LLMs within SLR 
workflows.

Table: Performance of LLMs Across SLR Tasks

Figure 1: PRISMA Diagram for the Targeted Review of Studies 
applying LLM in SLR steps
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• LLMs Assessed: GPT, Gemini, Bert, Claude and others such 
as Google PaLM 2 and Meta Llama 2

• SLR Tasks Analyzed: Title and abstract screening, full-text 
screening, data extraction and bias assessment

• Performance Metrics: Sensitivity, specificity, accuracy, and 
inter-rater agreement (e.g., kappa score).

RESULTS

LLMs Assessed
Among all LLMs, GPT was the most frequently evaluated LLM 
across studies (Figure 2).
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Figure 2: Distribution of LLMs Evaluated (among 33 independent 
evaluations)
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Performance Evaluation
Among all SLR steps, title and abstract screening using LLMs 
was the most frequently evaluated one across studies (Figure 
3).

Figure 3: Distribution of SLR Tasks Evaluated (among 18 
independent evaluations)

LLMs demonstrated strong performance across various 
systematic review tasks (Table).
• Title screening: Sensitivity 94.3%–96.2%; specificity 85.5%–

99.6%.
• Abstract screening: Accuracy 80%–97.5%; sensitivity 62%–

95%; specificity 65%–98.7%.

• Full-text screening: Accuracy 87%; sensitivity 71.4%; 
specificity 93.8%.

• Data extraction: Accuracy 67%–96.3%; sensitivity 36%–
96.2%; specificity >80%.

• Bias assessment: Strong agreement with human reviewers 
(kappa >0.89 for abstracts; 0.65 for full-text).

Task Best Performing 
Model Metric Performance 

Range

Title 
Screening GPT-3.5

Sensitivity 94.3%–96.2% 18

Specificity 85.5%–99.6% 18

Abstract 
Screening

GPT-4 (Acc, 
Spec)

GPT-3.5 (Sens)

Accuracy 80%–97.5% 22, 26

Sensitivity 62%–95% 23, 26

Specificity 65%–98.7% 22, 23

Full-Text 
Screening GPT-4

Accuracy 87% 22

Sensitivity 71.4% 22

Specificity 93.8% 22

Data 
Extraction

Claude 2 (Acc, 
Sens)

GPT-4 (Spec)

Accuracy 67%–96.3% 14, 17

Sensitivity 36%–96.2% 14, 17

Specificity >80% 17

Bias 
Assessment GPT-4

Kappa 
(Abstracts)

>0.89 22

Kappa (Full-text) 0.65 22
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