Return on Investment and Waste Considerations for the Implementation of

Rechargeable Batteries in Video Laryngoscopes

D. Brandt¹, M. Blüher², R. Saunders²

¹Medtronic, Boulder, CO, USA, ²Coreva Scientific GmbH & Co KG, Königswinter, NRW, Germany

BACKGROUND

- The operating room (OR) generates about 1/3rd of total hospital waste and interventions to reduce the environmental impact of the OR have been shown to have the potential to achieve cost savings in the long run.¹
- Of particular interest are batteries used in medical devices, which contain hazardous metals and require special disposal or recycling.²
- Here, the return on investment (ROI) for adopting rechargeable instead of single-use batteries for video laryngoscopes (VL) in ORs is assessed from the US hospital perspective.

METHODS

- A model was developed in Excel to estimate the ROI of a rechargeable battery for a hospital with 8 operation rooms performing 50,000 intubations per year, 75% using VL, with a mean 3-minute run time per intubation.
- Cost of disposing of single-use batteries is often higher than that of rechargeable batteries. Recycling single-use batteries is not always readily available, and many end up in landfills. The cost was set to be \$1 for rechargeable batteries and \$6 for single use batteries. The assumption was informed by commercial disposable cost in the Boulder County, CO, USA with \$0.13 (\$0.23 with surcharge) cost for the disposal of rechargeable lithium-ion batteries vs. \$3.38 (\$6.08 with surcharge) for lithium single-use batteries.²
- Initial cost of one charger per OR was considered.
- The electricity cost to charge the battery was not considered.
- The model estimated outcomes for a ten-year time horizon.
- Cost are in 2024 USD.

TABLE 1: Key Model Inputs

Variable	Base Case Single-Use	Base Case Rechargeable	
Battery Cost/unit	Reusable batteries are assumed to be ~10 times the cost of single-use batteries per unit		
Battery Lifetime	250 minutes	10,000 minutes	
Battery Disposal Cost ²	\$6	\$1	
Battery Charging Station	NA	1 charger per OR	
Battery Weight	30g	30g	

REFERENCES

- 1. Gwyneth A. Sullivan, Audra J. Reiter, Andrew Hu, Charesa Smith, Katelyn Storton, Brian C. Gulack, Ami N. Shah, Richard Dsida, Mehul V. Raval, Operating Room Recycling: Opportunities to Reduce Carbon Emissions Without Increases in Cost, Journal of Pediatric Surgery, Volume 58, Issue 11, 2023, Pages 2187-2191, ISSN 0022-3468, https://doi.org/10.1016/j.jpedsurg.2023.04.011.
- 2. BOULDER COUNTY, HAZARDOUS WASTE DISPOSAL COSTS FOR BUSINESSES, ttps://bouldercounty.gov/environment/hazardous-waste/disposal-costs-for-businesses/, accessed April,8 2025.

DISCLAIMER

D. Brandt is an employee of Medtronic. This study was sponsored by Medtronic.

(https://www.sciencedirect.com/science/article/pii/S0022346823002531)

M. Blüher is an employee, and R. Saunders is the owner of Coreva Scientific, which received consulting fees for this work.

RESULTS

- In the base case, transitioning from single-use to rechargeable batteries resulted in an additional cost of \$64,157 in year one, and ROI reached in year five. (Figure 1)
- In a scenario analysis, the cost of rechargeable batteries was varied from five to 15 times of the cost of single-use batteries, this resulted in a ROI period between three and seven years.
- Over a ten-year horizon, our model shows that 4,730 single-use batteries are required to complete 375,000 intubations, generating 142 kg of waste with a disposal cost of \$17,170. The usage of rechargeable batteries would require disposal of only 103 batteries generating 3 kg of waste and a disposal cost of \$13. Adopting rechargeable batteries would reduce the burden of collecting and recycling a total of 4,627 batteries over 10 years. (Table 2)

FIG 1: Cumulative cost of video laryngoscope batteries over a ten-year time horizon

TABLE 1: Cumulative waste

Year	Cumulative Disposed Single-Used Batteries (N)	Cumulative Weight of Waste of Single-Use Batteries (Kg)	Cumulative Disposed	Cumulative Weight of Waste of Rechargeable Batteries (Kg)
Year 1	473	14.2	0	0.0
Year 2	946	28.4	0	0.0
Year 3	1,419	42.6	1	0.0
Year 4	1,892	56.8	2	0.1
Year 5	2,365	71.0	7	0.2
Year 6	2,838	85.1	15	0.5
Year 7	3,311	99.3	29	0.9
Year 8	3,784	113.5	50	1.5
Year 9	4,257	127.7	75	2.2
Year 10	4,730	141.9	103	3.1

CONCLUSIONS: Transitioning to rechargeable batteries for video laryngoscopy is expected to be cost-saving over longer time horizons and will contribute to reducing the environmental impact of intubation in the OR.