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• Logistic Regression (Figure 2) outperformed other models, achieving an F1-score of 
78% and AUC of 85%, followed closely by XGBoost, Random Forest, and K-NN. 

• Odds Ratio (Figure 3) depicts several key factors which were identified, including 
Diabetes Mellitus (OR: 3.34), Soft Tissue Disorders (OR: 2.78), Hospital Admissions 
(OR: 2.76), Kidney Disorders (OR: 1.75), and Mobility Issues (OR: 1.66). These key 
factors demonstrated statistically significant associations with the risk of developing 
NF, supported by p-value (p < 0.05), indicating strong evidence of their clinical 
relevance.
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Background
• Necrotizing Fasciitis (NF) is a rare, fatal infection affecting 0.4 per 

100,000 people annually. It involves subcutaneous tissue and fascia 
and progresses rapidly, often within hours. 

• Early diagnosis is vital, reducing mortality from 13.2% to 5.7% and 
hospital stays by 10 days, preventing complications. 

• Machine learning (ML) models can help predict NF risks in the 
population, aiding early detection and treatment.

Figure 2. ROC Curve for Logistic 
Regression

Figure 3. Odds Ratio
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This study develops and evaluates a predictive ML model for early NF 
detection using Logistic Regression, XGBoost, Random Forest, and K-NN 
ML techniques. It identifies key risk factors to improve early diagnosis of 
NF and clinical decision-making.

• NF patients were identified from Optum® Market Clarity Data, covering 
cases from January 2021 to December 2023 using ICD-10 code M72.6. 

• Propensity Score Matching (PSM) was carried out to identify the 
matched controls using covariates such as age, gender, race, and 
region. 

• A total of 11,934 patients were analyzed, including 5,967 NF cases and 
5,967 non-NF patients (Figure 1). 

• The dataset was split into 80% for model training and 20% for testing, 
and four supervised ML models – Logistic Regression (LR), XGBoost
(XGB), Random Forest (RF), and K-NN – were deployed to predict NF 
risks. 

• Recursive Feature Elimination was used to identify the most important 
features to be used in the model. 

• Model performance was evaluated using Precision, Recall, and 
Accuracy. • ML models identified NF risk factors, enabling early detection and informed clinical 

decision-making. 
• Potential impact includes enhanced patient outcomes, reduced morbidity/mortality, 

improved healthcare resource utilization, and healthcare cost. 
• This study can be leveraged for personalized and targeted healthcare intervention 

among different clusters.
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Figure 4. Model Result
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Figure 1. Patient Attrition
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