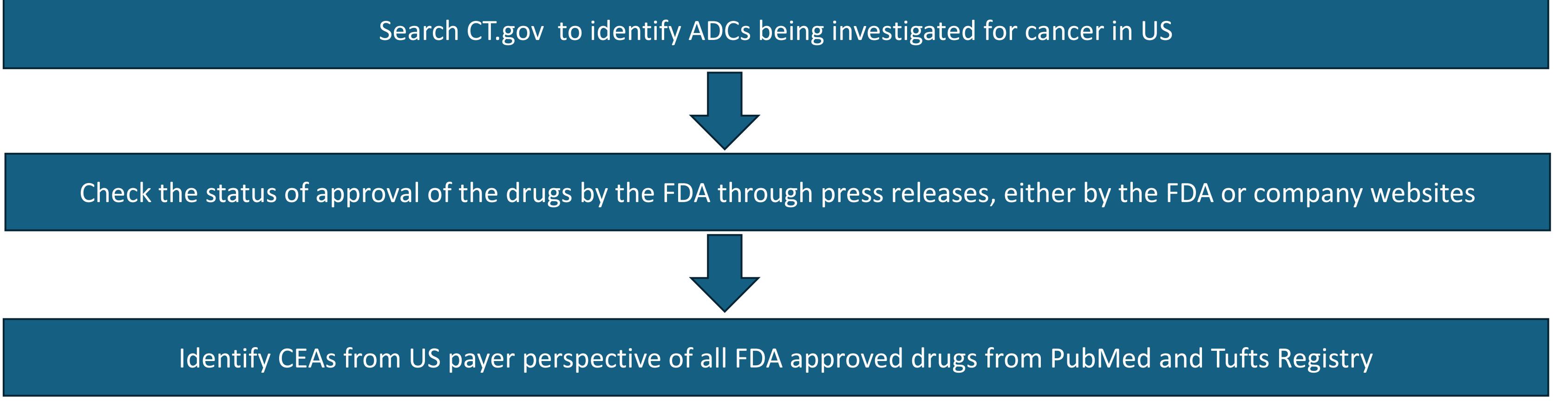


INTRODUCTION

- Antibody-drug conjugates (ADCs) are a class of biopharmaceuticals that utilize monoclonal antibodies to selectively deliver potent cytotoxic agents to the tumor site.¹
- They are structured as an antibody conjugated with a linker to a cytotoxic payload, thus combining the targeting ability of a monoclonal antibody with a potent cytotoxic effect to efficiently eliminate cancer cells.¹
- ADCs have evolved significantly in recent years for multiple disease areas, especially cancer. The first ADC was approved by the FDA (Food and Drug Administration) in 2000; since then, another 14 ADCs have gained approval for a variety of indications.¹
- However, ADCs are associated with high costs due to novelty and complexity of development, which may hinder their accessibility.
- In the current changing treatment landscape, it is important to understand how cost-effective the ADCs are compared to the other therapies available in the market for cancer.

OBJECTIVES


This review aimed:

- To identify ADCs approved for oncology by the FDA
- To review the US-based cost-effectiveness evaluations (CEAs) for these ADCs

METHODS

- We used clinicaltrials.gov (CT.gov) to identify trials investigating ADCs in oncology, primarily in the US, and analyzed their trial status. We also verified their status of drug development through press releases, either by FDA or the company websites.
- Subsequently, CEA for all FDA-approved ADCs were also identified and reviewed. (Figure 1)

Figure 1: Flow chart depicting methods followed for identifying ADCs and their CEAs

RESULTS

SECTION A: Trial characteristics

- CT.gov provided 242 hits, from which 66 ADCs were identified. 49 of them were phase I/II trials, while 17 were in phase III. Primary disease areas targeted by identified ADCs were lung cancer, breast cancer, and lymphoma (Figure 2). 11 ADCs have received FDA approval since 2011. Additionally, 8 ADCs have received Orphan Drug Designation (ODD) only, 10 ADCs have received Fast Track/Breakthrough designations, and 5 ADCs received both designations (Table 1).

Figure 2: Disease indications identified and phases of studies

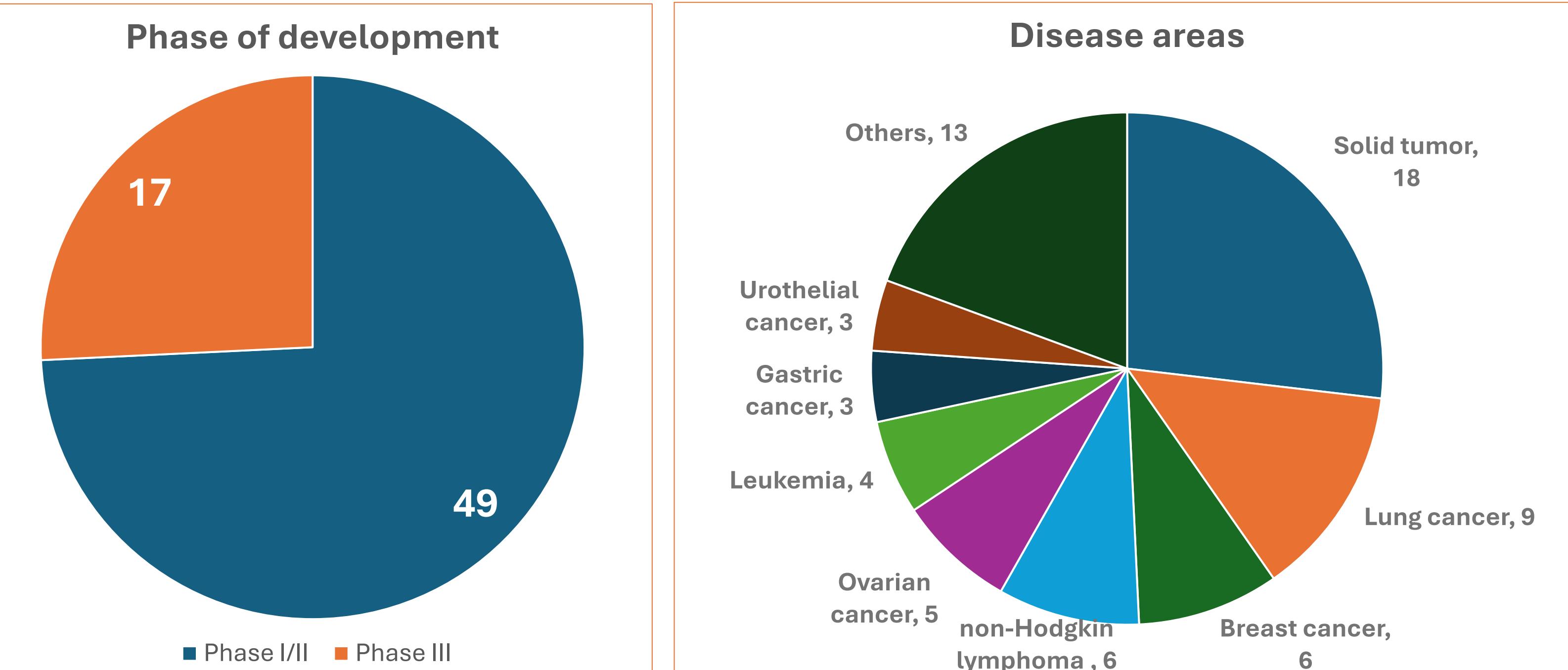


Table 1: FDA designations received by different ADCs

FDA Designation			
1. ODD	Brentuximab Vedotin (BV), Gemtuzumab Ozogamicin (GO), Inotuzumab Ozogamicin (IO), Loncastuximab Tesirine (LT), Polatuzumab Vedotin (PV)	4. Accelerated Approval	EV, LT, Mecbotamab Vedotin (MV), Mirvetuximab Soravtansine (MS), TD, Tisotumab Vedotin (TV)
2. Fast Track/ Breakthrough	BV, Enfortumab Vedotin (EV), IO, Trastuzumab Deruxtecan (TD), Trastuzumab Emtansine (TE)	5. Priority Review	BV, EV, IO, LT, MS, SG, TV, TD, TE, GO
3. CRL	Sacituzumab Govitecan (SG)	6. Assessment Aid	SG, LT, TV, TD, EV, BV

SECTION B: Description of approved ADCs

Table 2: Description of 11 ADCs

ADC, Year of first approval	Target	Cytotoxic payload	Disease indication
Brentuximab vedotin, 2011	CD30 antigen	Monomethyl auristatin E (MMAE)	Hodgkin's lymphoma Systemic anaplastic large cell lymphoma Primary cutaneous anaplastic large cell lymphoma Large B-cell lymphoma
Enfortumab vedotin, 2019	Nectin 4	Monomethyl auristatin E (MMAE)	Urothelial cancer
Gemtuzumab ozogamicin, 2017	CD33 antigen	Calicheamicin	Acute myeloid leukaemia
Inotuzumab ozogamicin, 2017	CD22 protein	N-acetyl- γ -calicheamicin	Acute lymphoblastic leukaemia
Loncastuximab tesirine, 2021	CD19 protein	Pyrolobenzodiazepine (PBD) dimer, SG3199	Diffuse large B-cell lymphoma
Mirvetuximab Soravtansine, 2022	Folate receptor alpha	DM4	Ovarian, fallopian tube, or primary peritoneal cancer
Polatuzumab vedotin, 2019	CD79b	Monomethyl auristatin E (MMAE)	Diffuse large B-cell lymphoma
Sacituzumab govitecan, 2020	Trophoblast cell-surface antigen 2 (Trop-2)	SN-38	Breast cancer
Tisotumab vedotin, 2021	Tissue factor expressing tumors	Monomethyl auristatin E (MMAE)	Cervical cancer
Trastuzumab deruxtecan, 2019	HER2 receptor	Deruxtecan (DXd)	Breast cancer Non-small cell lung cancer Gastric cancer Other solid tumors
Trastuzumab emtansine, 2013	HER2 receptor	Emtansine (DM1)	Breast cancer

Table 3: CEAs on the 11 ADCs (continued)

Sr. No.	Author, year	Drug name	Comparator	Costs year	WTP	QALY gained	ICER
20	Richardson et al. 2023 ²¹	Tisotumab vedotin	Chemotherapy + bevacizumab + pembrolizumab	NR	\$150,000/QALY and \$300,000/QALY	1.422	\$320,072.99 (CER)
21	Quang A. Le, 2016 ²²	Trastuzumab Emtansine	Lapatinib + capecitabine, monotherapy capecitabine	2015	\$150,000/QALY	NR	TE vs Lapatinib + capecitabine: \$220,385/QALY TE vs capecitabine monotherapy: \$168,355/QALY
22	Matasar et al. 2023 ²³	Polatuzumab vedotin plus rituximab, cyclophosphamide, doxorubicin, and prednisone (Pola-R-CHP)	Rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP)	2023	\$150,000/QALY	10.15	\$88,855/QALY
23	Betts et al. 2020 ²⁴	Polatuzumab vedotin, bendamustine and rituximab (Pola-BR)	Bendamustine and rituximab (BR)	2020	\$150,000/QALY	3.31	\$35,864/QALY
24	Kambhampati et al. 2022 ²⁵	Polatuzumab vedotin plus rituximab, cyclophosphamide, doxorubicin, and prednisone (Pola-R-CHP)	Rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP)	2021	\$150,000/QALY	11.8	\$84,308/QALY
25	Calamia et al, 2021 ²⁶	Tafasitamab-lenalidomide (Tafa-L)	Polatuzumab vedotin-bendamustine-rituximab (PBR)	2021	\$150,000/QALY	1.7	\$310,041/QALY
26	Huntington et al. 2017 ²⁷	Brentuximab vedotin + (doxorubicin, vinblastine, and dacarbazine)	Bleomycin containing chemotherapy (doxorubicin, bleomycin, vinblastine, and dacarbazine)	2017	\$150,000/QALY	0.56	\$317,254/QALY
27	Delea et al. 2018 ²⁸	Brentuximab vedotin + (doxorubicin, vinblastine, and dacarbazine (ABVD))	Doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD)	2018	\$100,000- \$200,000/QALY	0.76	\$172,074/QALY
28	Cai et al., 2025 ²⁹	Trastuzumab Deruxtecan	Docetaxel, Nivolumab	2024	\$150,000/QALY	1.16, 0.53, 1.10	\$338,997.84/QALY (T-DXd vs Docetaxel), \$1,437,258.33/QALY (T-DXd vs Nivolumab)
29	Hui et al. 2017 ³⁰	Brentuximab vedotin	Active surveillance	2016	\$100,000/QALY	1.07	\$148,664/QALY

SECTION C: CEAs identified

- Search on PubMed and Tufts registry provided us with 29 publications for the 11 ADCs. (Table 3)

Table 3: CEAs on the 11 ADCs

	Sr. No.	Author, year	Drug name	Comparator	Costs year	WTP	QALY gained	ICER
ADC vs ADC	1	Mudumba et al. 2024 ²	Trastuzumab deruxtecan	Trastuzumab emtansine	2022	\$100,000/QALY	5.09	\$230,285/QALY
	2	Yang et al. 2022 ³	Trastuzumab deruxtecan	Trastuzumab emtansine	2022	\$150,000/QALY	3.83	\$82,112/QALY
	3	Zhu et al. 2022 ⁴	Trastuzumab deruxtecan	Trastuzumab emtansine	2021	\$150,000/QALY	4.354	\$13,342/QALY
	4	Delea et al. 2019 ⁵	Blinatumomab	Inotuzumab Ozogamicin	2018	\$150,000/QALY	0.54-1.78	\$4,006-\$20,737/QALY
	5	Large et al. 2018 ⁶	Pembrolizumab	Brentuximab vedotin	2017	\$20,000/QALY	0.5	Dominant (cost saving)
	6	Huo et al., 2024 ⁷	Tisotumab vedotin	Chemotherapy	2023	\$150,000/QALY	0.25	\$839,107/QALY
	7	Wu et al. 2021 ⁸	Enfortumab vedotin	Chemotherapy	2021	\$150,000/QALY	0.69	\$2,168,746/QALY
	8	Li et al. 2024 ⁹	Enfortumab vedotin	Chemotherapy	2024	\$150,000/QALY	3.254	\$558,973/QALY
	9	Zhu et al. 2024 ¹⁰	Enfortumab vedotin	Chemotherapy	2024	\$150,000/QALY	1.1	\$267,491/QALY
	10	Zhu et al. 2024 ¹¹	Mirvetuximab soravtansine	Chemotherapy	2023	\$100,000/QALY	0.9	\$596,189/QALY
ADC vs Chemotherapy	11	Shi et al. 2023 ¹²	Trastuzumab deruxtecan	Chemotherapy	2021	\$100,000/QALY	0.727	\$83,892/QALY
	12	Lang et al. 2022 ¹³	Trastuzumab deruxtecan	Chemotherapy	2021	\$150,000/QALY	1.487	\$346,571/QALY
	13	Yang et al. 2023 ¹⁴	Trastuzumab deruxtecan	Chemotherapy	2022	\$150,000/QALY	0.47	\$317,494/QALY
	14	Zhu et al. 2022 ¹⁵	Trastuzumab deruxtecan	Chemotherapy	2022	\$150,000/QALY	1.869	\$296,873/QALY
	15	Xie et al. 2023 ¹⁶	Sacituzumab goxitecan	Chemotherapy	2023	\$150,000/QALY	0.7297	\$1,252,295/QALY
	16	Lang et al. 2023 ¹⁷	Sacituzumab goxitecan	Chemotherapy	2023	\$150,000/QALY	0.781	\$778,771/QALY
	17	Chen et al. 2021 ¹⁸	Sacituzumab goxitecan	Chemotherapy	2021	\$150,000/QALY	0.87	\$494,479/QALY
	18	Shi et al. 2023 ¹⁹	Sacituzumab goxitecan	Chemotherapy	2023	\$150,000/QALY	1.766	\$612,772/QALY
	19	Filho et al. 2022 ²⁰	Ado-Trastuzumab Emtansine	Trastuzumab	2018	\$180,000/QALY	0.45	\$11,467/QALY</td