

Risk of Cardiovascular Outcomes Among Patients with Migraine Using Contemporary Agents

Yu Hsin Wang, Kangho Suh, PharmD, PhD
University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15261

CO44

INTRODUCTION

- Triptans, first-line treatment for acute migraine, are contraindicated in over 20% of migraine patients due to their cardiovascular conditions, significantly limiting treatment options for this substantial population[1]
- Since 2020, FDA has approved non-vasoconstrictive alternatives (CGRP antagonists, 5-HT1F receptor agonist) that theoretically offer safer options for patients with cardiovascular risk factor
- Limited real-world evidence comparing cardiovascular risks exists, as clinical trials typically excluded patients with cardiovascular disease

OBJECTIVES

• Our study aimed to compare the risk of cardiovascular outcomes among patients treated with ubrogepant, rimegepant, and lasmiditan versus those treated with sumatriptan

METHODS

Data Source

• Utilized a large comprehensive administrative health claims database from 2016 to 2023

Study Design

- Retrospective cohort study design
- Three separate pairwise comparisons: sumatriptan vs. ubrogepant, sumatriptan vs. rimegepant, and sumatriptan vs. lasmiditan

Study Population

Inclusions

- Adults (≥18 years) with first-time use of migraine medications between 2016-2023
- At least 1 inpatient or 2 outpatient claims with migraine diagnosis (ICD-10-CM code G43.XX)
- 12 months of continuous enrollment before the index date *Exclusion*
- Prior use of study medications in the year before index date
- Prior use of other acute migraine-specific medications (triptans, ergots, atogepant) in the year before index date
- Diagnosis of abdominal migraine and Pregnancy in the year before index date

METHODS

Concurrent use of use of CGRP monoclonal antibodies for migraine prevention (erenumab, galcanezumab, fremanezumab, eptinezumab) on index date

Outcomes

• Three-point major adverse cardiovascular events (MACE), defined as a composite of acute myocardial infarction, stroke, and cardiovascular death

Statistical Analysis

- Created propensity scores using baseline characteristics (patient demographics, index year, migraine type, comorbidities, concomitant medications) and assessed cohort balance using SMD
- Performed propensity score matching (nearest neighbor, 0.1 SD caliper):
 1:1 ratio for ubrogepant-sumatriptan and rimegepant-sumatriptan;
 1:2 for lasmiditan-sumatriptan
- Assessed time to event using Cox proportional hazards models

Figure 1. Study design

RESULTS

• After propensity score matching, the analysis included three relatively well-balanced cohorts: ubrogepant vs. sumatriptan (2,834 patients each), rimegepant vs. sumatriptan (2,710 patients each), and lasmiditan vs. sumatriptan (165/330 patients)

Table 1. Baseline Characteristic

	Cohort 1			Cohort 2			Cohort 3					
Main Analysis	Ubrogepant (n=2,834)	Sumatriptan (n=2,834)	SMD	Rimegepant (n=2,710)	Sumatriptan (n=2,710)	SMD	Lasmiditan (n=165)	Sumatriptan (n=330)	SMD			
Age	50	49.9	0.001	51	51.4	-0.02	49.2	50.6	-0.09			
Gender(female)%	88.1	89.7	0.05	86.7	87.1	0.01	84.9	87	0.06			
Migraine with aura	14.9	15	0	15.7	16.4	0	10.3	12.7	0.13			
Charlson Comorbidity Index(mean/std)	1.3/1.9	1.2/1.8	0.05	1.5/2	1.5/2	0.01	1.6/1.9	1.7/1.8	-0.05			
Selected Comorbid Conditions, n(%)												
Dyslipidemia	42.6	40.4	0.05	45.8	44.1	0.03	43.6	44.6	-0.02			
Obesity	33	31.6	0.03	35.7	34.1	0.03	32.7	40.3	-0.15			
Hypertension	41	38.6	0.05	44.5	44.2	0.01	39.4	45.2	-0.11			
Ischemic heart disease	12.3	11.3	0.03	14	14.3	-0.01	20.6	21.8	-0.03			
Other CGRP antagonists	22	19.7	0.06	23	20	0.07	43	41.8	0.02			

RESULTS

- Patients receiving rimegepant had a 47% higher risk of composite MACE endpoint compared to those receiving sumatriptan (Table 2)
- Ubrogepant users demonstrated a trend toward increased MACE risk compared to sumatriptan recipients, though these associations did not reach statistical significance

Table 2. Main Analysis

	Coh	ort 1	Coh	ort 2	Cohort 3		
Main Analysis	Ubrogepant (n=2,834)	Sumatriptan (n=2,834)	Rimegepant (n=2,710)	Sumatriptan (n=2,710)	Lasmiditan (n=165)	Sumatriptan (n=330)	
MACE composite							
No. of events	121	139	142	160	14	22	
Incidence (1000ppy)	32.89	24.91	50.93	31.12	55.06	37.01	
HR (95% CI)	1.27 (0.99-1.64)	Ref	1.46 (1.15-1.86)	Ref	1.52 (0.76-3.05)	Ref	

CONCLUSIONS

- To the best of our knowledge, this is the first large-scale study comparing cardiovascular outcomes of contemporary migraine agents versus sumatriptan in a real-world setting
- Contrary to the assumption that non-vasoconstrictive CGRP antagonists would have better cardiovascular safety than triptans, our study observed a higher MACE risk with rimegepant compared to sumatriptan

Strengths

• Our study included patients with cardiovascular risk factors who are typically excluded from clinical trials, providing real-world evidence on safety in populations of greatest clinical interest.

Limitations

- Despite thorough matching procedures, residual confounding may persist due to channeling bias, as second-line medications are often prescribed to patients with contraindications to first-line therapy
- Reliance on claims data omits key clinical parameters that may influence treatment selection and outcomes
- Prescription records cannot verify actual medication adherence, potentially misclassifying exposure

References:
1. Oswald JC, et al. J Pain Res. 2018;11:2221-2227