Acute Myocardial Infarction and Associated Healthcare Resource Utilization and Costs Among U.S. Patients with Extreme High versus Low Lipoprotein(a)

Authors: Cory Pack¹, Maria Weck¹, Monica Silver¹, Joana Tome¹, Natalia Coenen¹, Maryam Ajose¹, **Elizabeth Marchlewicz¹**, Janna Manjelievskaia¹ Affiliations: ¹Veradigm, Chicago, IL, USA

Introduction

- Elevated lipoprotein (a) [Lp(a)] is associated with increased cardiovascular risk, including acute myocardial infraction (AMI).^{1,2}
- In the United States, there are no FDA-approved pharmaceutical treatments available to specifically target Lp(a).
- Currently, there is a lack of data examining cardiovascular-related healthcare resource utilization and cost burden of elevated Lp(a) in the real-world setting.

Objective

• To compare acute myocardial infarction (AMI)-related and all-cause healthcare resource utilization and costs (HRU&C) among patients with extremely high (XHI) vs low (LO) Lp(a) levels.

Methods

- This retrospective cohort study used NLP-enhanced data from the Veradigm
 Network EHR linked to closed claims from Komodo Health to identify adults with
 ≥1 Lp(a) lab result between January 1, 2016 and January 31, 2023.
- Patient demographics were described at baseline. Lab measures, lipid-lowering medications, and number of standard modifiable risk factors (SMuRFs) (0, 1, 2, 3, 4+) were captured in the baseline period. SMuRFs were defined as having hypertension, dyslipidemia, diabetes, chronic kidney disease, current or former smoker status, alcohol use disorder, and body mass index (BMI) <18.5 or ≥25.
- Individual SMuRFs and AMI, defined by ICD-10-CM diagnosis codes, were recorded in the variable-length follow-up period along with per patient per year (PPPY) AMI-related and all-cause healthcare utilization and costs.
- Patients were stratified by Lp(a) value into those with low (<50th percentile ["LO"]) and extremely high (>90th percentile ["XHI"]). Inverse probability treatment weighting (IPTW) was used to create a weighted study sample using the following variables: categorical age, sex, race, geographic region, # of baseline SMuRFs, and baseline statin and non-statin lipid-lowering medication use.
- Results are reported for the effective sample sizes of the LO and XHI cohorts following IPTW.

Figure 1: Patient Selection

≥1 valid lab test for Lp(a) between January 1, 2016 to January 31, 2023 (first valid Lp(a) lab test + 30 days = index date)

N=194,518

Age ≥ 18 on the index date AND EHR/continuous claims activity ≥ 13 mos prior to (baseline period) and ≥ 12 mos following (follow-up period) the index date N=28,674

No evidence of severe kidney dysfunction (stage 5 CKD or ESRD), prior renal transplant, renal replacement therapy, severe hepatic dysfunction, OR any malignant neoplasm (excluding nonmelanoma skin cancer) during the study period OR ASCVD in the baseline period

Table 1: Baseline Patient Demographics

	Extremely	Low Lp(a)	p
	High Lp(a)	Eow Lp(a)	
	N=2,233	N=11,023	
Age, Mean (SD)	53.1 (12.7)	53.3 (13.0)	0.52
Age Group, N (%)			0.98
18-34	193 (8.7%)	943 (8.6%)	
35-44	346 (15.5%)	1,691 (15.3%)	
45-54	607 (27.2%)	2,954 (26.8%)	
55-64	739 (33.1%)	3,640 (33.0%)	
65-74	237 (10.6%)	1,223 (11.1%)	
75+	111 (5.0%)	572 (5.2%)	
Sex, N (%)			0.47
Male	996 (44.6%)	4,822 (43.7%)	
Female	1,238 (55.4%)	6,201 (56.3%)	
Race, N (%)			0.96
White	1,501 (67.2%)	7,347 (66.7%)	
Black	121 (5.4%)	601 (5.5%)	
Asian	120 (5.4%)	613 (5.6%)	
Other	202 (9.1%)	1,043 (9.5%)	
Unknown/Not Reported	290 (13.0%)	1,418 (12.9%)	
Geographic Region, N (%)			0.87
Northeast	335 (15.0%)	1,719 (15.6%)	
Midwest	336 (15.1%)	1,686 (15.3%)	
South	889 (39.8%)	4,314 (39.1%)	
West	673 (30.1%)	3,303 (30.0%)	

SD, standard deviation.

Table 2: Baseline Clinical Characteristics

	Extremely High Lp(a)	Low Lp(a)	p
	N=2,233	N=11,023	
Lipid Measures, Mean (SD)			
Lp(a), nmol/L	303.9 (78.0)	21.1 (10.6)	<0.0001
Total Cholesterol, mg/dL	212.2 (47.9)	195.0 (45.8)	<0.0001
HDL-C, mg/dL	59.7 (17.7)	56.2 (17.6)	<0.0001
LDL-C, mg/dL	127.0 (44.6)	114.5 (39.1)	<0.0001
Triglycerides, mg/dL	122.4 (74.6)	136.6 (114.5)	<0.0001
Total Number of SMuRFs, Mean (SD)	2.0 (1.2)	2.0 (1.2)	0.73
Medication Use, N (%)			
Statins	849 (38.0%)	4,271 (38.7%)	0.52
Non-statin Therapies*	965 (43.2%)	4,873 (44.2%)	0.38
Total All-Cause Healthcare Costs, Mean (SD)	\$6,643 (\$11,739)		().47

*Non-statin therapies include PCSK9 inhibitors, omega-3 fatty acid ethyl esters, niacin, fibrates, dietary sources/soluble fiber, ezetimibe, bile acid sequestrants, ANGPTL3 inhibitors, and ACLY inhibitors. HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; Lp(a), lipoprotein(a); SD, standard deviation; SMuRFs, standard modifiable risk factors.

Figure 2: Top Risk Factors in Variable Length Follow-Up by Lp(a)

Figure 3: Proportion of Patients with AMI-related and All-Cause Healthcare Utilization in Variable-Length Follow-Up by Lp(a) Cohort

*Outpatient other services includes labs, radiology, E&M/observation, other. AMI, acute myocardial infarction; Lp(a), Lp(a)

Results

- Mean age was 53 years across the Lp(a) cohorts and majority were female (XHI: 55.4 vs LO: 56.3%) and White (67.2% vs 66.7%) (Table 1).
- Mean (SD) Lp(a) (nmol/L) in the XHI cohort was 303.9 (78.0) nmol/L vs 21.1 (10.6) nmol/L in the LO cohort (p<0.0001) (**Table 2**). Compared to patients with LO Lp(a), patients with XHI Lp(a) had higher total cholesterol and LDL-C levels, both above optimal clinical ranges (all p<0.0001).
- Similarly, in both cohorts, patients had a mean (SD) total number of 2.0 (1.2) SMuRFs at baseline; more than a third of study patients had evidence of statin use (38%).
- After weighting for baseline number of SMuRFs, dyslipidemia was more commonly observed among XHI vs LO patients in both baseline (79.6% vs 76.0%) and follow-up (85.8% vs 79.8%; both p<0.0001) (Figure 2).

Figure 4: AMI-related and All-Cause Healthcare Costs, PPPY, in Variable-Length Follow-Up by Lp(a) Cohort

\$- \$10,000 \$20,000 \$30,000 \$40,000 \$50,000 Extremely High Lp(a) Low Lp(a)

*Outpatient other services includes labs, radiology, E&M/observation, other. AMI, acute myocardial infarction; Lp(a), lipoprotein(a).

Results (cont'd)

- Mean (SD) follow-up length was similar across cohorts (1,239.0 [641.7] days). AMI was rare and did not vary by XHI vs LO cohort (1.6% vs 1.5%).
- There was no significant difference in all-cause inpatient admissions (IP) (13.0% vs 13.9%), though emergency department (ED) visits (39.6% vs 36.3%) differed significantly by cohort (p<0.01); mean PPPY IP (\$16,215 vs \$15,445) and ED (\$2,036 vs \$2,122) costs did not differ by cohort (**Figures 3 and 4**).
- Mean total all-cause healthcare costs did not significantly differ by cohort in baseline (\$6,643 vs \$6,882) or variable-length follow-up (\$8,242 vs \$8,381).
- For AMI-related utilization and costs, only ED visits (0.41% vs 0.16%) differed significantly (p<0.05), while IP admissions (0.85% vs 0.90%) and PPPY costs for IP (\$42,899 vs \$41,485) and ED (\$6,687 vs \$6,198) did not (**Figures 3** and **4**).

Conclusions

- After weighting, patients with extremely high Lp(a) did not have a greater risk of AMI than the patients with low Lp(a).
- The similarity in all-cause and AMI-related PPPY HRU&C suggests acute events, such as AMI, may not have the sustained burden of chronic conditions.
- Future work should examine the impact of Lp(a) on AMI over a longer time period; the mean 3.4 years of follow-up time may not be sufficient to observe the long-term health and economic burden among patients with elevated Lp(a).

eferences

- 1. Ciffone N, et al. Am Heart J Plus. 2023;38:100350.
- doi:10.1016/j.ahjo.2023.100350
- 2. Cai G, et al. *Biosci Rep.* 2019;39(4):BSR20182096. doi:10.1042/BSR201820960

Disclosures

J Tome was an employee of Veradigm at the time of this study. All other authors are current employees of Veradigm which funded and provided the data used in this study.