
© 2025 Parexel International (MA) Corporation www.parexel.com

Going Beyond Excel Vs. R

An Introduction To Visual Programming For Health Economics Modelling
JE. Poirrier 1, J. Vanderpuye-Orgle 2

REFERENCES
[1] Griffin, S. and K. Claxton (2011). Analyzing uncertainty in cost-effectiveness for decision-making. The Oxford Handbook of Health Economics. S. Glied and P. C. Smith. Oxford, Oxford University Press.

[2] Jalal, H., et al. (2017). "An Overview of R in Health Decision Sciences." Med Decis Making 37(7): 735-746.

[3] Alarid-Escudero, F., et al. (2019). "A Need for Change! A Coding Framework for Improving Transparency in Decision Modeling." Pharmacoeconomics 37(11): 1329-1339.

[4] Smith, R. A., et al. (2022). "Living HTA: Automating Health Economic Evaluation with R." Wellcome Open Res 7: 194.

[5] Smith, R. and P. Schneider (2020). "Making health economic models Shiny: A tutorial." Wellcome Open Res 5: 69.

[6] Flyde: https://www.flyde.dev/ (last visited: 10 April 2025)

Sampling

table
Distribution Param 1 Param 2

Input 1

Input 2

Input 3

…

Figure 2: Elements of Visual Programming

Background

Decision-makers within the healthcare sector are

faced with the choice between numerous competing

healthcare interventions and programs, of which only

a proportion can be provided with the available

resources [1]. Data input, calculation, and result

presentation for these choices are modelled in the

Cost-Effectiveness Model or Budget Impact Model, for

instance.

Nowadays, this modelling is performed with general-

purpose of specialised software.

MS Excel, a general-purpose spreadsheet software, is often the default

choice for most health economics models (HEM) because of its wide

availability, simplicity to approach and universal acceptance by Health

Technology Assessment (HTA) agencies worldwide. However, because

of its general-purpose nature, representing a model in Excel can

quickly become tedious, and adapting a model to a different structure

is often more complex than re-coding it from scratch. Finally, Excel

performs poorly in compute-intensive tasks (e.g. sensitivity analysis,

some model structure, …).

R has grown popular for over a decade [2]. This statistical

programming language provides more transparency [3], automation

and reproducibility [4], flexibility (based on packages dedicated to

HEMs) and user-friendliness (based on the use of Shiny [5]). However,

because it is based on code, its approach is tedious for non-

programmers, model structures are still complex to adapt (unless the

modeler did a proper analysis including potential adaptations), and

most HTA agencies have not entirely accepted models written in R yet.

Between Code and No-Code, Low-Code is a recent

way of programming that presents low code

requirements but allows for complexity and

customizability (Figure 1):

A low-code development platform provides a development environment

for creating application software, generally through a graphical user

interface. A low-code platform may produce entirely operational

applications or require additional coding for specific situations.

Can low-code programming facilitate quick prototyping

and the exploration of alternate model structures?

Methods

This research presents the concept of visual

programming, a programming method that lets health

economists create models by manipulating program

elements graphically rather than specifying them

textually (Figure 2).

In visual programming, elements are linked (and unlinked) by dragging

connectors (with a mouse in an editor). These connectors ensure

information is transferred between graphical elements and determine

the execution order (Figure 2).

Specifically, in this research, we are using Flyde [6] and its Visual

Studio Code (v. 1.94.0) extension (v. 0.105.2) on an MS Windows 11

laptop (Figure 3).

Flyde developers created a web version, further simplifying the use of

visual programming in a potentially restricted IT environment. Although

this is not investigated here, concepts can be applied similarly.

Each graphical element can represent model concepts

at different levels:

simple programming elements (“if”, “switch”, …),

simple modelling concepts (unit costs, market share projections,

adverse events, e.g.),

complex modelling concepts (like tree node, health state, sensitivity

analyses),

or even encapsulate a whole Markov trace or model.

Some graphical elements can also represent functions modulating the

expected behaviour of other elements (like discounting, allowing vial

sharing or not, …) or manage data input and output (including charting

and report generation).

These levels and the abstraction they contain allow for a quick learning

curve of the different visual elements within a familiar environment

(Figure 4).

Due to its visual nature, this versatility allows for faster

prototyping, allowing modellers to build and test ideas

quickly, for instance, while building an early model.

Adding a fourth health state (“Recover” in Figure 5) is only a

matter of cloning an existing “health state” element, changing

its behaviour (code) and reconnecting the model appropriately.

 Elements and connectors can be automatically

translated into classical modelling languages (Excel or

R, for instance), and these implementations could be

of higher quality (with several rounds of specialised

review) and well documented.

Table 1 summarises the benefits and challenges of

Visual Programming.

Results

Conclusions

This research presents the concept of visual programming of health economics models.

We show the quick learning curve to use and connect the visual elements into a meaningful model

Visual Programming can be used in health economics modelling programming

Visual Programming allows for faster model prototyping & easy exploration of alternate model structures

It still allows for an in-depth understanding of the code underneath

It also preserves the possibility of transforming them into more classical languages (like R or Python)

Highly reviewed nodes can be building blocks of high-quality Visual Programming models

Further practical implementations and visualisation aid will follow this research AFFILIATIONS
1 HEOR Modelling, Parexel International, Wavre, Belgium

2 Quantitative Insights, Parexel International, Los Angeles, USA

Code

Low code

No code

C
o

d
e

 q
u

a
n

ti
ty

C
o

m
p

le
x
it
y

C
u

s
to

m
iz

a
b

ili
ty

Add

N M

O

Show

A node: an isolated, modular unit that executes some

logic when it is executed. A node potentially has inputs

and outputs that allow it to interact with other nodes.

P
ro

c
e

s
s
 f
lo

w Input: data, number, string, figure, … given to the node

for processing. It can come from another node (variable)

or be static (constant).

Output: data, number, string, figure, … produced by the

node after processing. It can be sent to another node or

not.
Connection: Connect nodes together and allow them to

communicate. It can be 1..1, 1..N, N..1, N..N (publisher,

subscriber).

Figure 3: Visual Programming with Flyde in VS Code

Files Model representation in Visual Editor

Components

Is it cost-effective?

I T

A

ICER

calculator

I

Epi

Costs

QALY

DataICER

threshold

extractor

Figure 4: Example of two abstraction levels used to represent a cost-effectiveness model: model details and model object (used for sensitivity analysis)

Sensitivity analysis router

Model object

Figure 5: Example of quick model prototyping by the

addition of a fourth health state (compared to Figure 3)

Benefits Challenges

Faster prototyping
Build and test ideas faster, quick

prototyping

Fast exploration of alternate model

structure

Also: educational use, learning curve

Expandability (reuse), versatility,

abstraction

Higher quality
Visual debugging

Provided each element is QC’ed and

adequately documented

Automated translation to other

“classical” programming

languages

Open Source (Flyde)

Programming
Yet another language to program

nodes (Typescript for Flyde)

Readability
Use of space, multiple connections

(see Figure 5)

Reproducibility
Early model vs. HTA model

Performances?

Open Source
Flyde is under development

Table 1: Benefits and challenges of Visual Programming for Health Economics modelling

View all Parexel’s

posters at ISPOR 2025

MSR44

https://www.flyde.dev/

	Slide 1

