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Training machine learning (ML) models on small datasets may
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Resampling augmentation does not contribute to the

Simulations were performed using 13 large health datasets to
evaluate the impact of data augmentation on the prediction - . .
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performance (measured by AUC) on binary classification gradient model ¢ SEQ ¢ BN * CTGAN * TVAE iImprovement of model performance as much as the other
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the decision model for augmentation on small datasets and 0.45-
compare the data augmentation with the resampling approach.

050" 5 5 10 s o+ Dataaugmentation using generative models was

log(n') log(n’)

no = 30000 ho = 50000 demonstrated to provide significant improvements of
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Indicator and relevant data characteristics Is summarized as log(m) log() log() log() log() augmentation.
fOl |OWS- Figure 1. Augmentation performance of AUC against log(n’) for the two representative datasets (simple and complex), BSA

* A decision support tool was developed to ald users determine
the necessity of the data augmentation for a given dataset.

and FAERS datasets, for a subset of the baseline data sizes. The black dotted line is the baseline AUC for the base dataset
of size n,. Ny the size of the original data. n": the size of additional data simulated from generative models.

[(augmentation) ~ 6.75 — 4.79x10~n, — 4.94x10?imbalance factor + 5.12x10
“degrees of freedom - 7.63baseline AUC,

where /(-) is the indicator function, n, denotes the original sample size, imbalance factor is defined to |ncreas'hg diversity of the datasets is more beneficial than

» As more data are incorporated, data augmentation led to .

Mmeasure the outcome distribution, degrees of freedom indicates the degrees of freedom for the . . . : : - . . . .

predictors, and baseline AUC is the AU% obtained from model training O% the original data. iNnstrumental |mprovements of model performa nce, eSpeCla”y for Slmply ncreasing the Sample size without makmg IT
o . i diversified.

- The AUC from the original data was found to have the biggest small and medium no,

» However, for large n, augmentation has little benefits and even
become detrimental to the model performance.

« FAERS, a more complex dataset than BSA dataset, is more
benefited from augmentation in terms of model performance.

Impact on whether to recommend augmentation.
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e Moreover, the datasets that are smaller, more balanced, and more , , ,
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complex with higher cardinality are more likely to benefit from
augmentation.
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