M. DerSarkissian¹, C. Norregaard², H. Romdhani³, A. Muthukumar⁴, P. Bobbili⁵, M. Chin², B. Liu¹, L. Trinh³, M. Sheng Duh⁵

¹Analysis Group, Inc., Los Angeles, CA, US; ²Disc Medicine, Inc., Watertown, MA, US; ³Analysis Group, Inc., Montreal, QC, Canada; ⁴Analysis Group, Inc., Menlo Park, CA, USA; ⁵Analysis Group, Inc., Boston, MA, US

EE279

INTRODUCTION

- Erythropoietic protoporphyria (EPP) and X-linked protoporphyria (XLP) are characterized by the accumulation of protoporphyrin IX (PPIX), which leads to severe pain upon exposure to sunlight, with an estimated clinical prevalence of 1:200,000 to 1:57,000 and genetic prevalence of up to 1:17,000¹⁻⁶
- Patients with EPP, inclusive of XLP, often have systemic complications, including mild anemia, iron deficiency, vitamin D deficiency, and osteoporosis^{1,7,8}
- Approximately 56% of EPP patients have elevated liver biochemistries and 2.5% develop liver failure that requires liver transplantation⁹
- Given the rarity of the disease, there is a lack of information on the real-world burden of illness among patients with EPP/XLP
- This retrospective real-world study used a large, nationwide claims database to assess healthcare resource utilization (HRU) and costs, as well as to identify predictors of high healthcare costs among patients with EPP/XLP in the US

Patients with ≥2 diagnosis codes for

atients with the index date within a

closed eligibility period

N = 1,024 (63.8%)

Patients with continuous enrollmen

for ≥6 months pre-index

N = 738 (72.1%)

Patients with index date on or prior to

September 30, 2023

N = 725 (98.2%)

Patients with available birth year

N = 708 (97.7%)

EPP/XLP cohort

Patients in the EPP/XLP cohort with

4 exactly matched control patients

N = 696 (98.3%)

rate ratios (RRs) estimated from negative binomial regressions for

Predictors of high healthcare costs (follow-up costs ≥75th percentile)

HRU and cost ratios from two-part linear models for costs

in the EPP/XLP cohort were identified using linear regression

Figure 1. Sample Selection Flowchart

Control cohort

Sample of patients with no diagnosis

codes for EPP/XLP between 2016

N = 5,000,000

Patients with ≥1 continuous

enrollment period that included the

(ie, candidate index date)

N = 4,999,737 (99.9%)

Patients with continuous enrollmen

for ≥6 months prior to the candidate

N = 4,978,764 (99.6%)

Candidate control patients exactly

matched to ≥1 patient with EPP/XLF

N = 2,305,173 (46.3%)

Matched control cohort

Patients randomly selected without

replacement among the set of

candidate controls; 4 control patients

were exactly matched to 1 patient

with EPP/XLP

N = 2,784 (0.1%)

index date of ≥1 patient with EPP/XL

METHODS

Study Design

 A retrospective, longitudinal cohort study, which included an EPP/XLP cohort and a matched control cohort at a ratio of 1 patient with EPP/XLP to 4 control patients, was conducted

Patients were identified from the Komodo Research Database between 2016-2023 and matched on index date and key characteristics

EPP/XLP index date was date of first observed EPP/XLP diagnosis (ICD-10-CM: E80.0)

Patients were required to have 6 months of continuous enrollment pre-index (baseline).

 Per-patient-per-year (PPPY) HRU and costs (2023 US dollars) were assessed post-index and compared between cohorts using

RESULTS

Table 1. Patient Characteristics

	EPP/XLP cohort (n=696)	Matched control cohort (n=2,784)
Demographic Characteristics		
Age at index (years) ¹ , mean ± SD [median]	45.4 ± 23.6 [48.8]	45.6 ± 23.9 [48.9]
Female ¹ , n (%)	383 (55.0)	1,532 (55.0)
White ¹ , n (%)	383 (55.0)	1,532 (55.0)
South ¹ , n (%)	227 (32.6)	908 (32.6)
Commercial insurance ¹ , n (%)	443 (63.6)	1,772 (63.6)
2020-2023 index date, n (%)	351 (50.4)	1,404 (50.4)
Clinical Characteristics		
Modified CCI score ¹⁻² , mean ± SD [median]	0.9 ± 1.7 [0.0]	0.8 ± 1.6 [0.0]
Bone diseases related to vitamin D deficiency ³ , n (%)	128 (18.4)	322 (11.6)
Anxiety ³ , n (%)	124 (17.8)	277 (9.9)
Depression ³ , n (%)	111 (15.9)	239 (8.6)
Liver/biliary conditions ³ , n (%)	97 (13.9)	134 (4.8)
1.7		

¹ Variable used for matching the control patients to the patients with EPP/XLF ² Modified CCI score excluded liver disease

³ Standardized differences >10% in magnitude in EPP/XLP cohort vs matched control cohort

CCI: Charlson Comorbidity Index; SD: standard deviation

Patient Baseline Characteristics

- A total of 696 patients with EPP/XLP and 2,784 matched controls were included
- A higher proportion of patients with EPP/XLP had EPP/XLP-associated comorbidities than control patients
- Compared with controls, those with EPP/XLP incurred higher baseline all-cause HRU and costs
- Inpatient visits (mean PPPY): 0.53 vs 0.17, std diff=29.5%
- Outpatient visits (mean PPPY): 31.55 vs 16.79, std diff=37.1%
- Costs (mean PPPY total): \$39,440 vs \$14,821, std diff=30.3%

Figure 2. HRU During the Follow-up Period (PPPY)

* P < 0.05 CI: confidence interval; ER: emergency room; HRU: health resource utilization; IP: inpatient; OP: outpatient; PPPY: per patient per vear: RR: rate ratio

HRU During the Follow-up Period

- During a mean (SD) follow-up period of 30 (23) months, patients with EPP/XLP had consistently higher rates of HRU compared with matched controls
- Among patients with EPP/XLP, IP stays specific to EPP/XLP represented half of all-cause IP stays; OP visits represented more than 10% of all-cause OP visits

Figure 3. Healthcare Costs During the Follow-up Period (PPPY)

ER: emergency room; IP: inpatient; OP: outpatient; PPPY: per patient per year; USD: US dollar

Healthcare Costs During the Follow-up Period

- During the follow-up period, patients with EPP/XLP incurred higher healthcare costs compared with control patients
- Among patients with EPP/XLP, the total EPP/XLP-specific medical costs PPPY represented approximately one-fourth of total all-cause costs, mainly driven by OP costs

Figure 4. Predictors of High Healthcare Costs During the Follow-up Period

* P < 0.05

CCI: Charlson Comorbidity Index; CI: confidence interval; OR: odds ratio; ref: reference

Predictors of High Healthcare Costs

Among patients with EPP/XLP, age 18-64 years (vs <18), Northeast region (vs South), an index year in 2020 or later (vs in 2019 or before), CCI score, having ≥1 EPP/XLP-associated comorbidity, and having high healthcare costs during the baseline period (ie, ≥75th percentile) were significant predictors of high healthcare costs during the follow-up period

CONCLUSIONS

- This study demonstrated significant economic burden among patients with EPP/XLP, reflected by >3 times the number of IP stays and twice as many OP and ER visits compared with matched control patients
- Patients with EPP/XLP incur total healthcare costs that are nearly 4 times higher than those of matched control patients, mainly driven by higher IP and OP costs
- Age, CCI score, EPP/XLP-associated comorbidities, and high costs in the baseline period significantly predicted high healthcare costs in the follow-up period among patients with EPP/XLP
- These findings emphasize the significant unmet need for more effective treatments that could reduce the risk of EPP/XLP-related complications, improve patient outcomes, extend indications to younger patients, and ultimately alleviate the overall burden of disease in this population

References

- 1. Dickey AK, et al. Annu Rev Med. 2024;75:321-335.
- 2. Balwani M, et al. Erythropoietic protoporphyria, autosomal recessive. GeneReviews® [Internet]. 2017.
- 3. Balwani M. Mol Genet Metab. 2019;128(3):298-303.
- Wang Y, et al. Orphanet J Rare Dis. 2024;19(1):337.
- 5. Marko PB, et al. Acta Dermatovenerol Alp Pannonica Adriat. 2007;16(3):99-104.
- 6. Dickey AK, et al. Genet Med. 2021;23(1):140-148.
- 7. Holme SA, et al. Blood. 2007;110(12):4108-4110.
- 8. Delaby C, et al. Cell Mol Biol (Noisy-le-grand). 2009;55(1):45-52.
- 9. Levy C, et al. Hepatol Commun. 2025;9(3):e0657.

Acknowledgements

 This study was funded by Disc Medicine, Inc. Medical writing assistance was provided by Loraine Gregory, PhD, MWC, an employee of Analysis Group, Inc.

Contact

Melanie Chin, PhD | VP of Clinical Development, Head of Medical Affairs, Disc Medicine | mchin@discmedicine.com