Does Our Instrument Include the Right Response Options? Empirical Evidence to Evaluate Floor and Ceiling Effects for Multi-Item Ordinal Instruments Nicolai D. Ayasse, Fraser D. Bocell, Cheryl D. Coon

CLINICAL OUTCOME ASSESSMENT PROGRAM

Introduction

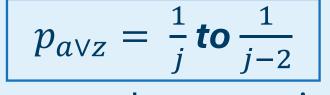
- Floor or ceiling (collectively "scale attenuation") effects in an ordinal item or instrument are marked by a large percentage of participants (a) endorsing the lowest or highest response option, or (b) assigned the lowest or highest possible score value.
- They are problematic when observed due to items or response options not adequately capturing the range of the latent variable (θ) intended to be measured.
- Although evaluation for scale attenuation effects is standard practice when psychometrically evaluating an instrument, there is *no standard reference* agreed upon in the field to define them.

Objective:

• To generate empirical evidence to inform the evaluation of scale attenuation effects, via simulation study.

Conclusions

It is important to account for key characteristics of the instrument and items, i.e., the **number of** response categories and number of items in the instrument, when examining the sample proportion assigned the lowest or highest possible score value or endorsing the lowest or highest response option.


Score-Level Proposed Reference Range:

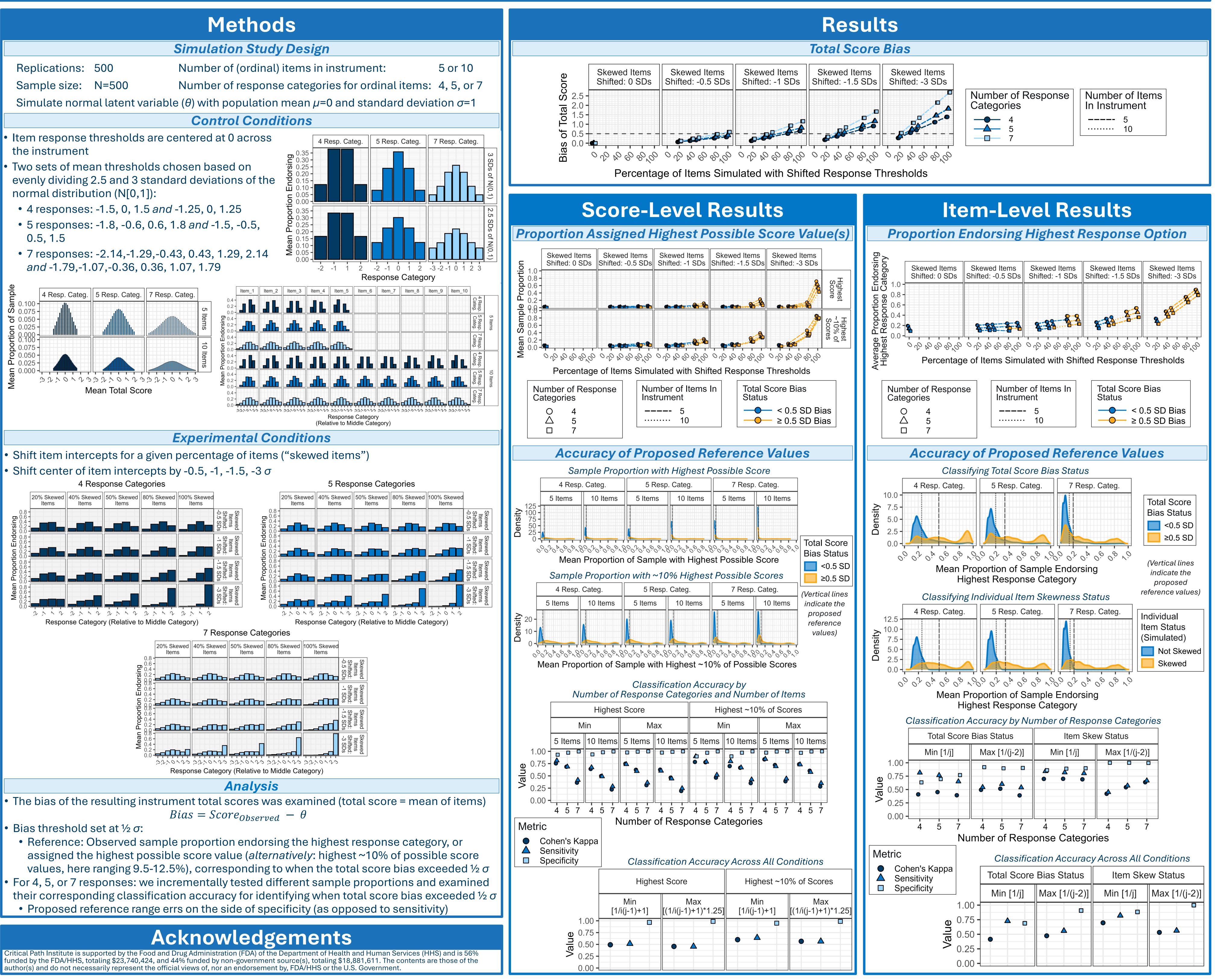
 $p_{A \vee Z} = \frac{1}{i(j-1)+1}$ to $\frac{1}{i(j-1)+1} \times 1.25$

where p_{AVZ} is the sample proportion assigned the lowest (A) or highest (Z) possible score value, *i* is the number of items in the instrument, *j* is the number of response categories

• An alternative metric (possibly more sensitive) is to consider the sample proportion assigned the highest or lowest ~10% of possible score values.

Item-Level Proposed Reference Range:

where p_{avz} is the sample proportion endorsing the lowest (a) or highest (z) response option, and j is the number of response categories


Recommendations:

- Instruments meeting these criteria should be examined carefully, although *meeting the criteria* alone should not be taken as definitive evidence of problematic attenuation effects.
- Note: This simulation assumes θ is normally distributed Instruments are designed with item locations spread along the target population's θ range, so observing possible attenuation effects in ~1-2 items without considering broader context is not necessarily informative.

Early in development: Examine individual items for possible attenuation effects.

- If observed: Do you have the right response options?
- Later in development:
- . Examine the *instrument scores* for possible score-level attenuation effects.
- If observed: Do you have the right items in the right θ range to adequately represent your target population on the concept of interest?
- 2. Examine the *individual items* for possible itemlevel attenuation effects.
 - <u>If observed</u>: Are there specific items that might be particularly problematic?
- Replications: 500 Sample size: N=500 the instrument normal distribution (N[0,1]): 0.5, 1.5 **O** 0.075 Bias threshold set at $\frac{1}{2}\sigma$:

