Dynamic Evaluation BACKGROUND

of Cardiometabolic Obesity and Cardiometabolic Conditions Methodology
d O b = D = E = QObesity is a chronic, multifactorial condition associated with increased risk of over 200 comorbidities, leading to substantial healthcare = Advancements in generative Al (GenAl), such as in simulating patient digital twins, are unlocking powerful new capabilities to understand complex diseases holistically
an es Ity ISeaS utilization and costs."2 with great depth and precision. GenAl models:
(D ECO D E) M o del = Cardiometabolic conditions like obesity and T2DM are interconnected disorders that share common biological pathways and risk factors, with - can incorporate multiple data sources to develop a comprehensive understandings of diseases
complex interactions as they progress. - do not rely on oversimplified assumptions like many traditional models do
= Quantifying the long-term comprehensive downstream impacts of anti-obesity interventions such as GLP-1 remains a challenge due to _are flexible to studying a wide range of research questions over diverse subpopulations and studying the benefits of treatments with multiple related indications
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: : - Complexity in assessing combined benefits of GLP-1s (e.g. weight reduction and A1C reduction) - In Mar. 2024, the FDA, NIH, and NSF created the Foundations for Digital Twins as Catalyzers of Biomedical Technological Innovation (FDT-BioTech) program to
1Analysis Group, Inc, Boston, MA, USA; 2Analysis Group,

Inc, Montréal, QC, Canada:sMeCill Univerciaen ] - Healthcare decision makers often need to evaluate benefits across a wide range of patient subpopulations advance biomedical innovation through the development of algorithms relevant to digital twins and synthetic humans.*
QC, Canada
METHODS
= Conditional Restricted Boltzmann Machines (CRBMs) are deep learning models that uncover Dandeli US Clai ] ] o

hidden relationships in data by modeling patterns between observed inputs and latent features.5 Ellelzlienn aims Figure 1. Visualization of the model
OBJECTIVES = Two large US databases — one EHR and one claims — were jointly used to train a digital twin [ 1 ( )
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= The model considered both fixed baseline variables and time-varying variables.
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= Dandelion Health’s EHR data

- The database includes rich long-term clinical details of over 10 million lives from three major Final cohort of Final cohort of . .
US health systems J ) 228,756 lives 240,155 lives Baseline Month T Month T + 1 (Predicted)
- The data comprises of variables within six clinical categories: medical diagnoses, Variables Variables
CONCLUSIONS procedures, medications, labs, vitals, and imaging. 53 time-dependent 48 time-dependent
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demonstrated great potential Time period Time period
to study various = Model performance was assessed across a 5-year time horizon on a test cohort of 10,000+ lives 2007 — 2024 2016 — 2023
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Model validation Estimating long-term benefits of weight loss
Method 1: Distributions of each variable at each time point were compared between Method 2: Correlations between variables, including across timepoints were compared between = The DECODE model was used to predict benefits of a 10% weight loss in an obese population
The model estimated the observed & predicted data the observed & predicted data’ ; .
substantial benefits from = The model showed strong correlation between observed and predicted distributions, in
weight loss in the obese terms of binary proportions (=p=0-99), continuous means (p=0.99), variances (p=0.99) Figure 3. Correlation between observed and predicted correlations p=0.97 In year ten, the risk ratios (RRs) are:
) and covariance structure (p=0.97).
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