RtCGM Use is Associated with Improved Glycemic Control Compared to isCGM in Commercially Insured People With Type 2 Diabetes on Semaglutide and Insulin

POSTER CODE: MT15

Poorva Nemlekar, Katia Hannah, Blake Liu, Gregory J. Norman Dexcom, Inc., San Diego, CA

RESULTS

BACKGROUND and AIMS

- Adding a glucagon-like peptide-1 receptor agonist (GLP-1 RA) to an insulin regimen helps people with type 2 diabetes (PwT2D) improve glycemic control.^{1,2}
- Additionally, continuous glucose monitoring (CGM) is beneficial for glycemic management alongside medications.
- This study evaluated the difference in glycemic outcomes between CGM systems: intermittently scanned (isCGM) or real-time CGM (rtCGM) in PwT2D on insulin therapy (basal and/or bolus) and a GLP-1 RA (semaglutide).

METHODS

- A retrospective analysis using Optum Clinformatics® de-identified US commercial administrative claims data was conducted.
- CGM-naïve PwT2D, age ≥30 years using insulin and semaglutide were identified. Index date was first claim for isCGM (FreeStyle Libre, 14 day, Libre 2) or rtCGM (Dexcom Gseries) between 01/01/2019 and 06/30/2023.
- Continuous health plan enrollment was required 6 months pre-(baseline) and post-(follow-up) index date. At least one laboratory HbA1c value was required during baseline and follow-up to calculate the HbA1c change.
- Individuals with evidence of pregnancy were excluded.
- Multivariate linear regression was used to analyze HbA1c change by cohorts, controlling for age, gender, baseline HbA1c, comorbidity score, race, and region.

Characteristics	rtCGM (N = 205)	isCGM (N = 239)
Age, Mean (SD)	54.9 (8.6)	55.5 (8.2)
Race/Ethnicity, n (%)		
Asian	8 (4.1)	13 (5.4)
Black	25 (12.8)	27 (11.3)
Hispanic	19 (9.7)	24 (10.0)
White	138 (70.4)	164 (68.6)
Unknown/Missing	15 (7.3)	11 (4.6)
Female, n (%)	92 (44.9)	98 (41.0)
Charlson Comorbidity Score, Mean (SD)	1.27 (1.47)	1.39 (1.52)
Region, n (%)		
Midwest	40 (19.5)	42 (17.6)
Northeast	12 (5.9)	23 (9.6)
South	121 (15.0)	132 (55.2)
West	32 (15.6)	42 (17.6)

Table 1. Demographics

Figure. Unadjusted HbA1c Change in Cohorts

Table 2. Multivariate Regression

Variable	∆HbA1c, β (SE)	Confidence Interval (C.I.)	p- value
rtCGM use	-0.31 (0.11)	-0.53 to -0.09	
Age	0.02 (0.01)	0.01 to 0.04	0.0062
Mean HbA1c at baseline	-0.62 (0.03)	-0.69 to -0.56	<0.0001
Race/Ethnicity			
Asian	-0.06 (0.27)	-0.59 to 0.46	0.81
Black	0.22 (0.18)	-0.13 to 0.57	0.22
Hispanic	-0.01 (0.19)	-0.38 to 0.37	0.97
White	Reference		
Unknown/Missing	-0.15 (0.30)	-0.74 to 0.45	0.63
Gender			
Male	-0.15 (0.12)	-0.38 to 0.07	0.18
Female	Reference		
Charlson Comorbidity Score	-0.02 (0.04)	-0.10 to -0.05	0.56
Region			
Midwest	Reference		
Northeast	-0.11 (0.24)	-0.35 to 0.58	0.64
South	0.08 (0.15)	-0.22 to 0.38	0.60
West	0.07 (0.19)	-0.30 to 0.44	0.69

☐ Unadjusted HbA1c change estimate was -0.43% (p=0.0419).

☐ After adjusting for covariates, rtCGM use was associated with a -0.31% (p=0.0068) greater reduction in HbA1c compared to isCGM use.

Mean diff = Difference in mean HbA1c for each cohort calculated as follow-up HbA1c value minus baseline HbA1c value

DiD = Difference-in-differences

STRENGTHS and LIMITATIONS

Strengths

- The study used extensive, standardized health data from a large database.
- A robust longitudinal study was conducted over a one-year period to assess outcomes.

Limitations

- Observational study design.
- Generalizability of study findings may be limited to US commercially insured population.
- Study used pharmacy claims data to calculate medication and CGM use over time, which may not reflect the actual extent to which a person used medications or wore a CGM.
- Doses of GLP-1 RA or insulin were not accounted for in this study.

CONCLUSIONS

- RtCGM use was associated with significantly greater reductions in HbA1c compared to isCGM use. This could be due to higher adherence rates in rtCGM systems than with isCGM systems.³
- Findings suggest rtCGM use provides an additive glycemic benefit in PwT2D taking both insulin and a GLP-1 RA (semaglutide).

REFERENCES

¹Anderson SL, Trujillo JM. Basal Insulin Use With GLP-1 Receptor Agonists. *Diabetes Spectr*. 2016;29(3):152-160

²American Diabetes Association Professional Practice Committee. 9. Pharmacologic Approaches to Glycemic Treatment: *Standards of Care in Diabetes-2025* 48(Supplement_1):S181–S206

³Nemlekar PM, et al. Association Between Adherence, A1C Improvement, and Type of Continuous Glucose Monitoring System in People with Type 1 Diabetes or Type 2 Diabetes Treated with Intensive Insulin Therapy. *Diabetes Ther*. 2024;15(3):639-648.