
The annual rate of published research has grown 
steadily over the past decades leading to increasing 
volumes of available literature.1 

Synthesis of clinical literature can often be a time-
consuming and resource-intensive process due 
to the number of publications that need to be 
reviewed, aggregated, analyzed, and interpreted.2  

Artificial intelligence (AI) can potentially expedite the 
evidence synthesis process for health economics 
and outcomes researchers and is gaining traction 
for this use.

It is unclear, however, which AI tools are being used 
and whether they effectively improve the efficiency 
and quality of evidence synthesis.
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BACKGROUND

OBJECTIVE

To review recent literature 
evaluating the performance 
of AI and large language 
models (LLMs) in the evidence 
synthesis of clinical research

METHODS

Table 1: Overview of Assessment Methods

A total of 8 studies were identified; the majority 
(n=6) focused on evidence summarization, while 
the remaining 2 evaluated the extraction of pre-
specified data (Figure 2) 
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CONCLUSION 
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RESULTS

Figure 1: Search Breakdown
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In this review, GPT-4 was the most commonly tested tool. Future assessments should also 
quantify the potential time and cost saving through AI. 

Numerous methods of assessment were observed, highlighting the need for a                     
standardized assessment checklist to appropriately appraise the performance of LLM 
tools in evidence synthesis.

With the release of newer models (eg, GPT-4.5, Claude 3.7), continued assessment of AI 
tools will be essential to determine the feasibility of broader use in research. 

      

A literature review was conducted in EMBASE for articles published since 2022 that describe the 
performance of LLM tools in clinical literature synthesis

Additional articles were identified through citation searching and supplemental desktop research         
on arXiv (Figure 1) 

Key information was captured including the name of tools used, the type of evidence synthesized, 
and the methods for evaluating the tool’s performance

Figure 2: Type of evidence synthesis assessed

The clinical literature synthesized included 
systematic reviews (n=3), randomized 
controlled trials (n=3), clinical trial report (n=1), 
and review article (n=1) (Figure 3).

                                                                         
Figure 3: Type of literature synthesized
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A total of 17 tools were identified, with some utilizing the same type of LLM (GPT-4), such as Ref AI,3 
ScholarAI,3 and TrialMind.4 GPT-4 was the most commonly used LLM (Figure 4) 

                                                                         Figure 4: Types of LLMs used for the synthesis of clinical literature

Publication Tools 
assessed

Type of evidence 
synthesis assessed

Type of 
literature 
synthesized

Type of 
assessment

Results of 
human 
evaluation

Konet 20245 •	 Claude 2
•	 GPT-4

Extraction of pre-specified 
data RCT Accuracy (human) •	 Claude 2: 96.3%

•	 GPT-4: 69%

Li 20243

•	 Ref AI (GPT-4        
Turbo

•	 ChatGPT-4
•	 ScholarAI (GPT-4)
•	 Gemini

Evidence summarization Review Accuracy, comprehensiveness, 
reference integration (human)

•	 RefAI: 83%
•	 ChatGPT-4: 58.3%
•	 ScholarAI: 62.7%
•	 Gemini: 44%

Li 20246

•	 GPT3.5-turbo
•	 GPT-4
•	 Gemini-1.0-pro
•	 Flan-UL2
•	 Med-Alpaca
•	 PMC-LLaMA

Evidence summarization RCT

Precision, recall, accuracy 
(ROUGE, BLEU, METEOR)

Completeness, correctness,        
coherence (human)

Correctness:
•	 GPT3.5-turbo: 69%
•	 GPT-4: 72%
•	 Gemini-1.0-pro: 64%
•	 Flan-UL2: 44%
•	 Med-Alpaca: 44%
•	 PMC-LLaMA: 45% 

McMinn 20237

•	 Longformer-              
Encoder-Decoder

•	 BART
•	 PEGASUS

Evidence summarization CTR
Accuracy 
(ROUGE, METEOR) Not applicable

Shahib 20248 •	 GPT3 Evidence summarization RCT Accuracy, coherence, 
usefulness (human)

Overall score was not 
generated for tool

Sun 20249 •	 Claude 2
•	 GPT-4

Extraction of pre-specified 
data

Systematic               
reviews Accuracy (human) •	 Claude 2: 46-97%

•	 GPT-4: 40-87%

Wang 20244
•	 TrialMind (GPT4+-

Claude3.5)
•	 GPT-4

Evidence summarization Systematic                 
reviews Accuracy (human)

Win ratea (across 5 
studies)
•	 TrialMind: 62.5%-100%
•	 GPT-4: 0%-37.5%

Zhang 202410

•	 PRIMERA
•	 LongT5
•	 Llama-2
•	 GPT-3.5

Evidence summarization Systematic             
reviews              

Precision, recall, accuracy 
(ROUGE-L, METEOR)

Consistency, 
comprehensiveness,
specificity, readability (human)

Win rateb 
•	 LongT5: 60%            
•	 Llama-2: 59%
•	 PRIMERA: 55%
•	 GPT-3.5: Not reported 

The use of AI will continue to revolutionize how research is conducted, resulting in increased                
efficiency. Human oversight remains vital for validation and addressing errors.

Potential time savings can lead to cost reduction that can provide additional support for other              
activities to bolster a biopharmaceutical product’s value story.11

Due to variations in assessment methodologies across studies, no single LLM tool was identified as 
the definitive choice for evidence synthesis. However, as AI tools continue to evolve, improvements 
in accuracy and completeness are anticipated in the future.

Assessments focused on

Human evaluations of accuracy (n=4) resulted in the following scores (Table 1):  
•	Claude 2: 40%-97%
•	GPT-4: 40%-87%
•	Gemini: 44%-64%
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