Expediting Evidence Synthesis: A Review of Recent Research **Evaluating Artificial** Intelligence's Performance in **Evidence Synthesis** and Summarization of **Clinical Literature**

Fadi Manuel¹, Rachel Black¹, Tyler Reinsch², Jiawei Chen¹, Danny Yeh¹

¹AESARA Inc., Chapel Hill, NC, USA ²Arysana Inc., Chapel Hill, NC, USA

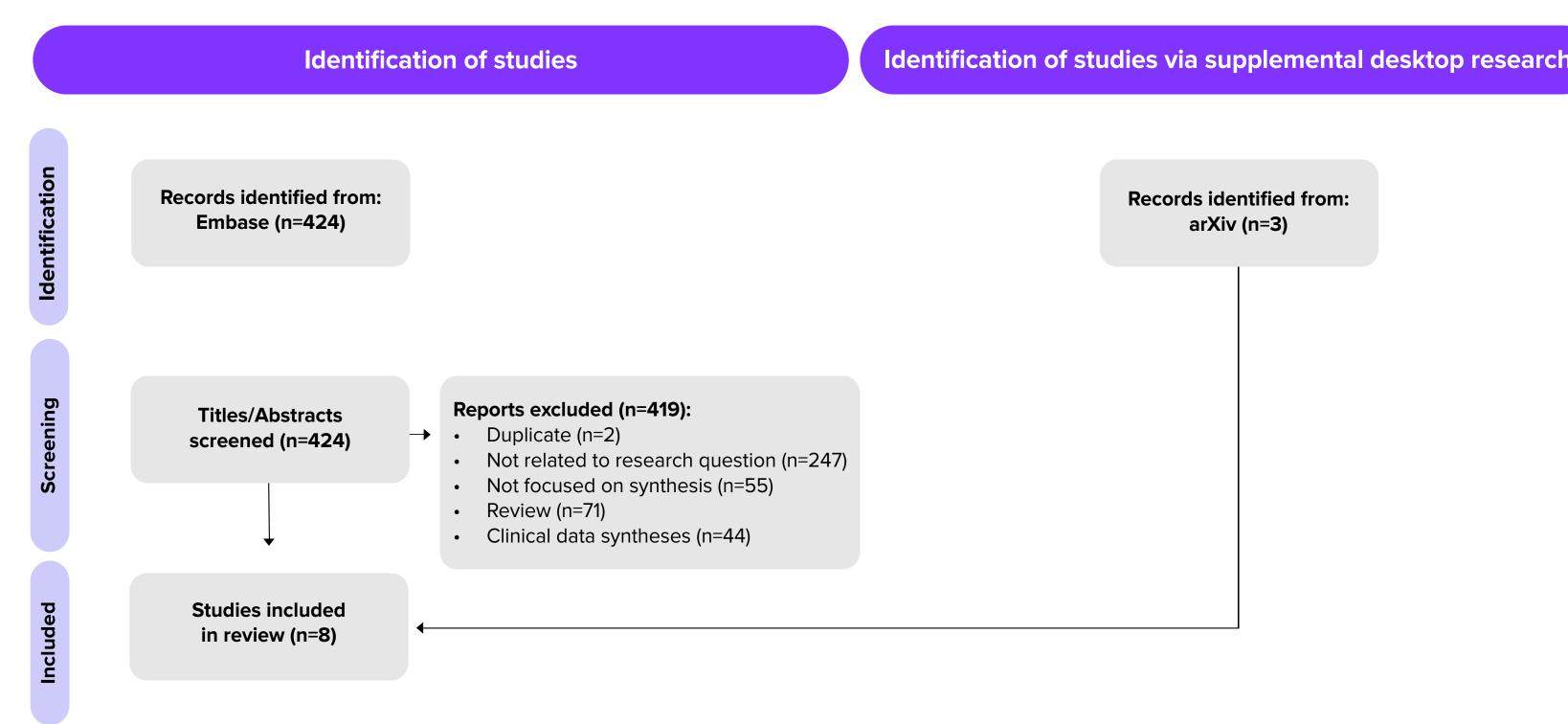
BACKGROUND

- The annual rate of published research has grown steadily over the past decades leading to increasing volumes of available literature.¹
- Synthesis of clinical literature can often be a timeconsuming and resource-intensive process due Là to the number of publications that need to be reviewed, aggregated, analyzed, and interpreted.²
- Artificial intelligence (AI) can potentially expedite the evidence synthesis process for health economics and outcomes researchers and is gaining traction for this use.

It is unclear, however, which AI tools are being used \bigcirc and whether they effectively improve the efficiency and quality of evidence synthesis.

OBJECTIVE

To review recent literature evaluating the performance of AI and large language models (LLMs) in the evidence synthesis of clinical research


METHODS

A literature review was conducted in EMBASE for articles published since 2022 that describe the performance of LLM tools in clinical literature synthesis

Additional articles were identified through citation searching and supplemental desktop research on arXiv (Figure 1)

Key information was captured including the name of tools used, the type of evidence synthesized, and the methods for evaluating the tool's performance

Figure 1: Search Breakdown

RESULTS

A total of 17 tools were identified, with some utilizing the same type of LLM (GPT-4), such as Ref AI,³ ScholarAI,³ and TrialMind.⁴ GPT-4 was the most commonly used LLM (Figure 4)

Figure 4: Types of LLMs used for the synthesis of clinical literature

Frequency of LLMs used in identified publications

^aIncludes turbo version

Human evaluations of accuracy (n=4) resulted in the following scores (Table 1): • Claude 2: 40%-97%

- GPT-4: 40%-87%
- Gemini: 44%-64%

Table 1: Overview of Assessment Methods

Publication	Tools assessed	Type of evidence synthesis assessed	Type of literature synthesized	Type of assessment	Results of human evaluation
Konet 2024⁵	Claude 2GPT-4	Extraction of pre-specified data	RCT	Accuracy (human)	Claude 2: 96.3%GPT-4: 69%
Li 2024 ³	 Ref AI (GPT-4 Turbo ChatGPT-4 ScholarAI (GPT-4) Gemini 	Evidence summarization	Review	Accuracy, comprehensiveness, reference integration (human)	 RefAI: 83% ChatGPT-4: 58.3% ScholarAI: 62.7% Gemini: 44%
Li 2024 ⁶	 GPT3.5-turbo GPT-4 Gemini-1.0-pro Flan-UL2 Med-Alpaca PMC-LLaMA 	Evidence summarization	RCT	Precision, recall, accuracy (ROUGE, BLEU, METEOR) Completeness, correctness, coherence (human)	 Correctness: GPT3.5-turbo: 69% GPT-4: 72% Gemini-1.0-pro: 64% Flan-UL2: 44% Med-Alpaca: 44% PMC-LLaMA: 45%
McMinn 2023 ⁷	 Longformer- Encoder-Decoder BART PEGASUS 	Evidence summarization	CTR	Accuracy (ROUGE, METEOR)	Not applicable
Shahib 2024 ⁸	• GPT3	Evidence summarization	RCT	Accuracy, coherence, usefulness (human)	Overall score was not generated for tool
Sun 2024 ⁹	Claude 2GPT-4	Extraction of pre-specified data	Systematic reviews	Accuracy (human)	 Claude 2: 46-97% GPT-4: 40-87%
Wang 2024 ⁴	 TrialMind (GPT4+- Claude3.5) GPT-4 	Evidence summarization	Systematic reviews	Accuracy (human)	 Win rate^a (across 5 studies) TrialMind: 62.5%-100% GPT-4: 0%-37.5%
Zhang 2024 ¹⁰	 PRIMERA LongT5 Llama-2 GPT-3.5 	Evidence summarization	Systematic reviews	Precision, recall, accuracy (ROUGE-L, METEOR) Consistency, comprehensiveness, specificity, readability (human)	 Win rate^b LongT5: 60% Llama-2: 59% PRIMERA: 55% GPT-3.5: Not reported

^aRatio of summaries evaluated as better for each respective tool ^bRatio of machine-generated summaries evaluated as better than the baseline

DISCUSSION

The use of AI will continue to revolutionize how research is conducted, resulting in increased efficiency. Human oversight remains vital for validation and addressing errors.

Potential time savings can lead to cost reduction that can provide additional support for other activities to bolster a biopharmaceutical product's value story.¹¹

Due to variations in assessment methodologies across studies, no single LLM tool was identified as the definitive choice for evidence synthesis. However, as AI tools continue to evolve, improvements in accuracy and completeness are anticipated in the future.

CONCLUSION

In this review, GPT-4 was the most commonly tested tool. Future assessments should also quantify the potential time and cost saving through AI.

Numerous methods of assessment were observed, highlighting the need for a standardized assessment checklist to appropriately appraise the performance of LLM tools in evidence synthesis.

REFERENCES

- Res. 2022;27(1):95. Published 2022 Jun 20. doi:10.1186/s40001-022-00717-9
- 2009;26(2):91-108. doi:10.1111/j.1471-1842.2009.00848.>
- Res Synth Methods. 2024;15(5):818-824. doi:10.1002/jrsm.1732
- and summarization. J Am Med Inform Assoc. 2024;31(9):2030-2039. doi:10.1093/jamia/ocae129
- Published online October 21, 2024. doi:10.1109/JBHI.2024.3483816
- 6. McMinn D. Original abstracts from the 2023 European Meeting of ISMPP. Curr Med Res Opin. 2023;39(suppl 1):41. doi: 10.1080/03007995.2023.2184562

- medRxiv. 2024:2024.02.20.24303083. doi.org/10.1101/2024.02.20.24303083
- Preprint posted online October 28, 2024. doi.org/10.48550/arXiv.2406.17755
- and Synthesis Pipeline in Health Economics. Clin Transl Sci. 2025;18(4):e70206. doi:10.1111/cts.70206

arXiv (n=3)

Records identified from

The clinical literature synthesized included controlled trials (n=3), clinical trial report (n=1),

With the release of newer models (eg, GPT-4.5, Claude 3.7), continued assessment of Al tools will be essential to determine the feasibility of broader use in research.

1. Zhao X, Jiang H, Yin J, et al. Changing trends in clinical research literature on PubMed database from 1991 to 2020. Eur J Med 2. Grant MJ, Booth A. A typology of reviews: an analysis of 14 review types and associated methodologies. Health Info Libr J. 3. Konet A, Thomas I, Gartlehner G, et al. Performance of two large language models for data extraction in evidence synthesis 4. Li Y, Zhao J, Li M, et al. RefAI: a GPT-powered retrieval-augmented generative tool for biomedical literature recommendation 5. Li J, Deng Y, Sun Q, et al. Benchmarking Large Language Models in Evidence-Based Medicine. IEEE J Biomed Health Inform.

7. Shaib C, Li ML, Joseph S, Marshall IJ, Li JJ, Wallace BC. Summarizing, simplifying, and synthesizing medical evidence using GPT-3 (with varying success). arXiv. Preprint posted online May 11, 2023. doi.org/10.48550/arXiv.2305.06299 8. Sun Z, Zhang R, Doi SA, et al. How good are large language models for automated data extraction from randomized trials? 9. Wang Z, Cao L, Danek B, Jin Q, Lu Z, Sun J. Accelerating clinical evidence synthesis with large language models. arXiv.

10. Zhang G, Jin Q, Zhou Y, et al. Closing the gap between open source and commercial large language models for medical evidence summarization. npj Digital Medicine. 2024/09/09 2024;7(1):239. doi.org/10.1038/s41746-024-01239-w 11. Naylor NR, Hummel N, de Moor C, Kadambi A. Potential Meets Practicality: Al's Current Impact on the Evidence Generation **ABBREVIATIONS IN TABLES AND FIGURES**

Al, artificial intelligence; CTR, clinical trial report; LLM, large language model; RCT, randomized controlled trial.

ACKNOWLEDGEMENT Emma Edwards developed the graphics for this poster.

CONTACT INFORMATION Fadi Manuel Manager, Value Evidence, AESARA E-mail: fadi.manuel@aesara.com Presented at: ISPOR International Conference, May 13-16, 2025, Montreal, Quebec, CA

Download poster here aesara.com