
• High-dimensional (variable-rich) data in predictive analytics is prone to 
overfitting and makes prediction tasks more difficult due to data sparsity and 
increased computational complexity.1

• In recent years, more feature selection workflows have been developed and 
proposed as tools to help optimize the feature space for prediction tasks in 
big healthcare data analytics.2, 3

• However, to our knowledge, no big healthcare data feature selection 
workflow has been proposed for time-dependent prediction informed by the 
most recent feature values prior to each prediction time window (i.e. a time-
updating feature space) and most feature selection approaches do not 
prioritize features based prior evidence

Objective: To develop and apply a feature selection workflow to a high-
dimensional, person-time period dataset to select features for opioid use 
disorder (OUD) risk prediction within 90 days.

METHODS

Data Source
• Statewide health insurance claims data was utilized from the Arkansas All-

Payer Claims Database (AR-APCD) between November 2018 – December 
2023.4

Case study Sample
• Subjects: Insured (medical + pharmacy benefits), adult (≥ 18 years old ) 

Arkansas MMJ Cardholders without a recent history of OUD in the past 6 
months.

• Data structure: Person-period dataset (subject follow-up split into 90-day 
time intervals), where OUD prediction for each time interval is informed by 
prior 6 months of features

Engineered Feature Categories

• Demographics 

• age, sex, insurance payer type

• Healthcare Utilization 

• E.g. primary care provider visit count, cumulative out-of-pocket costs

• Clinical features

• Labeled prognostic if evidenced by prior literature, labeled agnostic 
otherwise 

• Prescription Characteristics (Categorized using First Databank (FDB) 
therapeutic classes)5

• Comorbidities (Categorized using Clinical Classifications Software Refined 
(CCSR))6

• Utilized Chronic Condition Indicator Refined (CCIR) to identify “acute” 
and “chronic” CCSR-based groupings7

• Acute condition 

• < 50% ICD-10-CM codes in CCSR groupings with CCIR flag) 

• Only count in the time-interval(s) the condition was identified

• Chronic condition 

• ≥ 50% ICD-10-CM codes in CCSR groupings with CCIR flag) 

• Count in the time-interval the condition was initially identified and 
carry forward to all future time-intervals.

CONCLUSION
✓ The feature count of the case study dataset was reduced from 569 to a final feature space of 180 while 

maintaining clinical interpretability for each feature.

✓ A feature selection workflow leveraging clinical expertise with a comprehensive sequential dimensionality 
reduction approach is an effective way to reduce high-dimensionality while maintaining a clinically meaningful 
feature space.
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Variable Clustering Demonstration (Ex. Acute Pregnancy Conditions)

FIS = Feature Importance Scores, OUD = Opioid Use Disorder, PCA = Principal Component Analysis

• Identified CCSR categories: PRG003, PRG006, PRG008, PRG009, PRG010, PRG011, 
PRG013, PRG015, PRG016, PRG018, PRG020, PRG023, PRG024, PRG026, PRG027, PRG028

• Each category contained > 30 observations (step 1) in the cohort overall but 
contained <5 observation in the minority class (step 2) 

• After viewing clustering results, principal component analysis (PCA) was 
used to reduce these features to their 1st principal component (labeled 
“Acute pregnancy conditions”) (step 3) 

Spearman Correlation Matrix Similarity Score-Derived Dendrogram

Cut-point visualization: Linear and Ensemble-
based feature selection results
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