Developing a Feature Selection Workflow for Variable-Rich Data: A Case Study Utilizing Claims Data to Build
UAMS Classifiers for the Prediction of Opioid Use Disorder Among Persons Authorized to Purchase Medical Cannabis
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BACKGROUND

* High-dimensional (variable-rich) data in predictive analytics is prone to
overfitting and makes prediction tasks more difficult due to data sparsity and
increased computational complexity.!

* In recent years, more feature selection workflows have been developed and
proposed as tools to help optimize the feature space for prediction tasks in
big healthcare data analytics.> 3

* However, to our knowledge, no big healthcare data feature selection
workflow has been proposed for time-dependent prediction informed by the
most recent feature values prior to each prediction time window (i.e. a time-
updating feature space) and most feature selection approaches do not
prioritize features based prior evidence

Objective: To develop and apply a feature selection workflow to a high-
dimensional, person-time period dataset to select features for opioid use
disorder (OUD) risk prediction within 90 days.

METHODS

Data Source

e Statewide health insurance claims data was utilized from the Arkansas All-
Payer Claims Database (AR-APCD) between November 2018 — December
2023.4

Case study Sample

e Subjects: Insured (medical + pharmacy benefits), adult (> 18 years old )
Arkansas MMJ Cardholders without a recent history of OUD in the past 6
months.

e Data structure: Person-period dataset (subject follow-up split into 90-day
time intervals), where OUD prediction for each time interval is informed by
prior 6 months of features

Engineered Feature Categories

* Demographics
* age, sex, insurance payer type

* Healthcare Utilization
e E.g. primary care provider visit count, cumulative out-of-pocket costs

* Clinical features

* Labeled prognostic if evidenced by prior literature, labeled agnostic
otherwise

* Prescription Characteristics (Categorized using First Databank (FDB)
therapeutic classes)?

* Comorbidities (Categorized using Clinical Classifications Software Refined
(CCSR))®

» Utilized Chronic Condition Indicator Refined (CCIR) to identify “acute”
and “chronic” CCSR-based groupings’
* Acute condition

* <50% ICD-10-CM codes in CCSR groupings with CCIR flag)
* Only count in the time-interval(s) the condition was identified

e Chronic condition
e 250% ICD-10-CM codes in CCSR groupings with CCIR flag)

 Count in the time-interval the condition was initially identified and
carry forward to all future time-intervals.

FEATURE SELECTION WORKFLOW

[ Raw Data Ingestion ]

¥
Candidate Feature
Engineering/Screening

— S
e —

Case Study:
OuUD prediction

} _________________ + 569 Features

-— e
_,-I-'- -\-\_‘_
— e
i o
[ ——

Separate clinical feature types for feature selection process |

Y Y Y
Chronic Comorbidities Acute Comorbidities | l Prescription variables |
| Y | . Y

1. Combine Rare Clinical Feature Groupings (<=30 observations) into larger,

+ ™ 458 Features
clinically relevant groupings

Y Y Y

2. ldentify clinically relevant feature clusters for highly-imbalanced Clinical Feature
Groupings (<5 minority class observations) using:

a. Spearman correlation matrices

b. Similarity score-derived dendrograms

' Y
, ¥ Y L g
. . . . . . : Identitied:

3. Visually inspect and identify clinically relevant clusters for highly-imbalanced features « 24 pairings

a. Only 2 features in cluster: pairings combine into 1 feature - = | . 48 PCA groupings

b. = 2 features in cluster: Reduce to 1st principal component using PCA v
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4, Utilize both a 1) Linear-based and 2) Ensemble-based feature selection approach:

Cox proportional
hazards-derived p-values
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1. Sort and visually inspect p-values
2. Choose cut-off point retaining
>=60% of prognostic features

Random forest-derived FIS

1. Sort and visually inspect FIS
2. Choose cut-off point retaining
»>=60% of prognostic features

Final Feature Space: L
Include features retained in

either feature selection strategy 180 Features

FIS = Feature Importance Scores, OUD = Opioid Use Disorder, PCA = Principal Component Analysis

Variable Clustering Demonstration (Ex. Acute Pregnancy Conditions)

* Identified CCSR categories: PRG003, PRGO06, PRG0O08, PRG0O09, PRG010, PRGO11,
PRG013, PRG0O15, PRG016, PRG018, PRG020, PRG023, PRG024, PRG026, PRG027, PRG028

* Each category contained > 30 observations (step 1) in the cohort overall but
contained <5 observation in the minority class (step 2)

» After viewing clustering results, principal component analysis (PCA) was
used to reduce these features to their 15t principal component (labeled
“Acute pregnancy conditions”) (step 3)
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Cut-point visualization: Linear and Ensemble-
based feature selection results

1. Random forest-derived feature importance scores

Prognostic variables retained: 38 (79.17%)

Total variables retained: 156 (63.16%)

FIS cut-point: 0.0020
Prognostic variables excluded: 10 (20.83%)

Total variables excluded: 91 (36.84%)

¥

2. Cox proportional hazards-derived p-values

Prognostic variables retained: 32 (66.70%)

Total variables retained: 93 (37.65%)

p-value cut-point 0.6714
Prognostic variables excluded: 12 (33.30%)

Total variables excluded: 154 (62.35%)

Final feature space
(features retained in either feature selection strategy)

Prognostic variables retained: 45 (93.75%)

Total variables retained: 180 (72.87%)

Prognostic variables excluded: 3 (6.25%)

Total variables excluded: 247 (27.13%)

CONCLUSION

v The feature count of the case study dataset was reduced from 569 to a final feature space of 180 while
maintaining clinical interpretability for each feature.

v A feature selection workflow leveraging clinical expertise with a comprehensive sequential dimensionality
reduction approach is an effective way to reduce high-dimensionality while maintaining a clinically meaningful
feature space.
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