Comparison of Generative Al and Manual Data Programming in a Lupus Health Productivity Loss Study

OBJECTIVE

• To evaluate the performance of a generative artificial intelligence (GenAl) assistant in analyzing health productivity losses in a U.S. claims database, compared with analysis using human-written code

CONCLUSIONS

- ChatGPT-4 can replicate simple data-related tasks, such as patient selection, when the input is broken down into separate tasks, with an acceptable number of prompt iterations
- For the coding of complex tasks, human intervention and high-level programming skill remain necessary to leverage ChatGPT's capabilities
- The potential of ChatGPT in health economics has yet to be fully realized and the utility demonstrated in this study warrants further investigation

\rightarrow Scan QR code for copy of poster

International Society for Pharmacoeconomics and Outcomes Research (ISPOR) 2025 May 13–16; Montreal, Canada

Tiange Tang, MPH,^{1,2} Catherine Mak, MPharm MSc,¹ Feng Zeng, PhD¹ ¹Biogen, Cambridge, MA, USA; ²Tulane University, New Orleans, LA, USA

Introduction

- In recent years, there has been growing adoption of generative artificial intelligence (GenAI); however, its application in health economics has not been widely explored¹
- Outside of health economics, the utility of ChatGPT (a GenAl assistant) has been recognized in tasks related to code generation²
- This study evaluated the coding performance of ChatGPT to analyze real-world data on health-related productivity losses in a U.S. commercially insured population compared with existing analysis undertaken by human coders (see ISPOR 2025 poster **EE137**)

Methods

Research goal

• To understand the health-related productivity losses associated with patients newly diagnosed with systemic lupus erythematosus (SLE), using a real-world dataset

Study cohort

- Data were obtained from the IBM[®] MarketScan[®] database, the IBM[®] MarketScan[®] Health Productivity and Management (HPM) database, and Medicare claims, covering the period from January 1, 2016, to December 31, 2022
- Two adult cohorts were defined: newly diagnosed SLE and non-SLE (which included other non-SLE conditions)
- Newly diagnosed patients with SLE were defined as having ≥ 2 outpatient claims with an International Classification of Diseases (ICD)-9/10 code for SLE and ≥30 days between claims, or ≥ 1 inpatient claim with an ICD-9/10 code for SLE
- The ICD-9/10 codes used for patient selection included: 7100, M32, M321, M3210, M3211, M3212, M3213, M3214, M3215, M3219, M328, and M329
- The index date was the first SLE diagnosis within the study period - Patients diagnosed with SLE 12 months or less prior to the index date and those with drug-induced SLE were excluded
- Non-SLE was defined as having no SLE claim/diagnosis during the study period and eligible for disability benefits
- The index dates were randomly selected from the available range and randomly assigned (seed number: 100) to patients to simulate the distribution of index dates within the SLE cohort
- Wage rates and benefit data were extracted from the Bureau of Labor Statistics³

Statistical analyses

- Propensity score weighting was used to balance baseline differences between newly diagnosed SLE and non-SLE cohorts
- An inverse probability of treatment weighting (IPTW) cross-sectional linear regression evaluated the health productivity losses associated with SLE, after controlling for patient demographics, index year, U.S. region, and covariates

ChatGPT coding process

- The ability of ChatGPT to replicate manual analyses of productivity losses was assessed
- The artificial intelligence (AI) coding replication process was evaluated in four steps:
- 1) Researchers completed all tasks using Structured Query Language (SQL) and R, including coding and visualization of results
- 2) Human-written code was divided into tasks, with corresponding prompts created for ChatGPT-4
- 3) ChatGPT-generated code was tested against the original human-generated results
- 4) Human intervention was introduced if ChatGPT-4 was unable to generate the correct code to complete the task after 10 prompt attempts
- Figure 1 presents an example of prompt and ChatGPT response for the extraction of yearly absenteeism records from the HPM database
- The quality of written prompts has an impact on the AI output and requires careful consideration
- Criteria to evaluate the coding performance of ChatGPT included: - **Success:** Measure of whether ChatGPT was able to generate the requested code
 - Efficiency (SQL): Measure of the number of tables / temporary views generated per task
- Efficiency (R): Measure of the number of commands used per task - Accuracy: Measure of whether ChatGPT was able to replicate the correct results

Figure 1. Example human prompt and ChatGPT output for data extraction task

Attempt 1 Prompt

Good, now we will move forward and generate a new temp view named abs 201 by select all variables from cora.conti_members_gpt ai \${d.hpm}.abs2016_v3, add new variable 2016 as year, another new variable 2016 abs_year.

Join by id, note that patid is from cora.conti members and enrolid is from \${d.hpm}.abs2016_v3.

Results

- code for each task

- Index scores using ICD-9/10 coding)

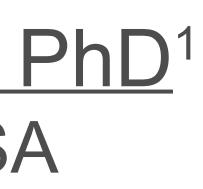
- abundance of options

Table 1. ChatGPT programming performance evaluation

		Outcomes			
- Part 2: Charlson comorbidity scores calculation		Success (Yes/No)	Efficiency (continuous)*	Accuracy (Yes/No)	Number of revisions
Step 1	Warming up – input ChatGPT-generated code to refresh and catch up on the work we were doing	Yes	N/A	Yes	N/A
Step 2	Select all the disease records for eligible SLE patients	Yes	1	Yes	2
Step 3	Limiting the disease records to the pre-index date	Yes	1	Yes	1
Step 4	Generate indicator variables for diseases that constituted CCI score	No	1	Yes (with human intervention)	10
Step 5	Assign the score weight to each of the indicator variables	Yes	1	Yes	2
Step 6	Drop duplicates of the disease records	Yes	1	Yes	0
Step 7	Calculate the CCI score for each eligible SLE patient (the final table for CCI index score calculation SLE-CCI set)	Yes	1	Yes	0

high efficiency

CCI, Charlson Comorbidity Index; NA, not applicable; SLE, systemic lupus erythematosus



	→ ChatGPT output
W 6_gpt, and and as	CREATE OR REPLACE TEMP VIEW abs_2016_gpt AS SELECT cm.*, Selects all columns from 'cora.conti_members_gpt' abs.*, Selects all columns from '\${d.hpm}.abs2016_v3' 2016 AS year, Adds a new column 'year' with value 2016 2016 AS abs_year Adds a new column 'abs_year' with value 2016 FROM cora.conti_members_gpt cm LEFT JOIN \${d.hpm}.abs2016_v3 abs
	ON cm.patid = abs.enrolid;

• **Table 1** presents ChatGPT's programming performance by coding outcome • The human-written code was divided into 75 separate tasks and ChatGPT generated

Of these tasks, 77.3% were completed without the need for revisions

- 18.7% of tasks required <10 prompt revisions to achieve accurate results

- The remaining 4% of tasks needed human intervention (e.g., calculation of Charlson Comorbidity

Overall, ChatGPT:

• Demonstrated excellent performance when conducting date- and time-related tasks Experienced difficulties when running requests for high-complexity tasks and when facing an

*Efficiency is a measure of the number of tables / temporary views / commands per task; a low value indicates