Economic and Healthcare Burden in Patients with Fragile X Syndrome: A Systematic Literature Review Liliane Martinez¹, Amrinder Singh², Rachel Goldgrub² ¹ICON plc, Mexico City, Mexico; ²ICON plc, Vancouver, Canada ## Introduction Fragile X syndrome (FXS) is a rare genetic disorder that encompasses substantial economic challenges on individuals, families, and healthcare systems. The combination of high per-patient costs, limited treatment options, and fragmented care pathways contribute to a disproportionate financial burden. 1,2 While the clinical impact of FXS is well recognized, the economic and healthcare resource burden remains inadequately quantified.² ## Objective To conduct a systematic literature review (SLR) analyzing the direct costs, indirect costs, and resource utilization associated with patients diagnosed with FXS. ## Methods The SLR methodology followed the recommendations published in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, the Centre for Reviews and Dissemination, and the Cochrane Collaboration.^{3,4} #### **Eligibility Criteria** The eligibility criteria for the SLR are outlined below in Table 1, according to the PICOS (Patients, Interventions, Comparators, Outcomes, Study Design) statement #### Table 1. Eligibility Criteria of the SLR | PICOS
Element | Inclusion Criteria | Exclusion Criteria | |-----------------------------|---|--| | Population | Patients with FXS of any age | Non-FXS populations | | Intervention/
Comparator | NA | NA | | Outcomes | Healthcare costs and resource utilization | Studies not reporting relevant outcomes | | Study Design | Observational studies, economic evaluations, survey-based studies | RCTs, case reports, commentaries, letters, reviews, other non-included designs | | Other | English only | Non-peer reviewed | ## Information sources Abbreviations: FXS, Fragile X Syndrome; NA, not applicable Searches for published studies were run in Embase, Medline, EconLit through the OVID platform, combining free-text and Controlled vocabulary terms. #### **Study Selection** Abstracts were screened by two independent reviewers, with a third reviewer resolving any disagreements. Relevant abstracts were then advanced to full-text screening using the same process. #### Data Extraction and Critical Appraisal - Data from included studies were extracted into pre-made sheets capturing healthcare costs and resource utilization. Extractions were validated by an independent reviewer. - Critical appraisal was conducted using the Newcastle-Ottawa Scale⁵ ## Results #### **Literature Search Finding** - From 824 initial abstracts identified, 639 were screened after removing 185 duplicates, with 608 excluded during abstract screening. - After full-text screening of the remaining 31 records, 8 studies (9 records) were included in the final SLR. (**Figure 1**).^{1-2,6-12} ### Figure 1. PRISMA Flow Diagram #### **Included Studies** - Five studies used cross-sectional designs, while the remaining three studies used cohort design, with data collected through various methods including surveys, questionnaires, databases, and claims. - Most studies (n=6) were conducted in the USA, with one was from Australia, and in Europe (n=1), with perspectives primarily being societal (n=4) #### Table 2 Included Studies | Table 2. Included Studies | | | | | | | |--|-----------------|---------------|----------------------|-------------------------|----------------|--------------| | Study &
Country | Study
Design | Data | Perspective | Ref. Year
(Currency) | Sample
Size | NOS
Score | | Bailey 2012
(USA) ⁶ | Cross-sec | Survey | Societal | 2011 (USD) | 350 | 4 | | Baker 2021
(AUS) ⁷ | Cross-sec | Questionnaire | Societal | 2019 (AUD) | 35 | 7 | | BURQOL-
RD (EU) ^{2,8} | Cross-sec | Questionnaire | Societal | 2012 (EUR) | 241 | 7 | | Nazareth
2015 (USA) ⁹ | Cohort | Claims | Payer | 2012 (USD) | 697 | 9 | | Ouyang
2014
(USA) ¹⁰ | Cross-sec | Survey | Patient | - (USD) | 189 | 7 | | Raspa 2016
(USA) ¹ | Cross-sec | Survey | Societal | - (-) | 340 | 7 | | Sacco 2013
(USA) ¹¹ | Cohort | Claims | Payer/
Healthcare | - (USD) | 1505 | 9 | | Vekeman
2015
(USA) ¹² | Cohort | Database | Payer | 2012 (USD) | 590 | 9 | Abbreviations: AUD. Australian Dollar: AUS. Australia: FRA. France: EU. Europe: EUR. Euro: NOS. Newcastle-Ottawa Scale, USA, United States of America; USD, US dollar #### **Patient Characteristics** Most patients were male $(46\%^{12}-89.5\%^8)$, with sample sizes ranging from 35^7- 1505¹¹ and mean ages spanning from approximately 9⁷ to 26¹² years. #### **Healthcare Costs** - The economic burden varies significantly across studies, with direct healthcare costs ranging from €410 (in two patients in the UK)⁸ - €2,675 (95 French patients)⁸ in European countries to approximately \$2,233 in males 12-17 years to \$32,606 in females 0-11 years in the United States (US)12 - While in Australia, the mean total cost was estimated at AUD\$33,2196 - Mean medication costs ranged from €4 to €307 in Europe⁸ and from \$89 in males⁶ to \$2,358 in the US.⁹ - The hospitalization/inpatient costs in Europe varied from €208 in Hungary to €9028 in France. - The hospitalization costs in the US were \$2,3969 to a mean of \$25,84711 and \$5469 in Australia. **Medication cost** The mean annual indirect costs in France was €31,240 (SD €9,991)² Total Direct Costs #### **Table 3. Healthcare Costs** | Study | Mean (SD) | - Mean (SD) | (Mean [SD]) | (Mean [SD]) | |-------------------------------|----------------------------|---|--|---| | Bailey
2012 ⁶ | - | - | Males \$89 (range
\$2-\$1000)Females \$95 (range
\$1-\$888) | - | | Baker
2021 ⁷ | - | - | • \$300 (95% CI 100–
500) | • \$5469 (95% CI 3504–7434) | | BURQOL-RD ^{2,8} | France: | France: €2,675 (€5,519) Hungary: €110 (€127) Italy: €2,485 (€3,099) Spain: €948 (€1,213) Sweden: €953 (€998) UK: €410 (€579) | France: €55 (€157) Hungary: €4 (€14) Italy: €98 (€222) Spain: €307 (€459) Sweden: €86 (246) UK: €62 (€87) | France: €902 (€4717) Hungary: €20 (€46) Italy: €264 (€731) Spain: €29 (€149) Sweden: €42 (€171) UK: €0 (0) | | Nazareth
2015 ⁹ | - | - | \$2,358 (\$5,155) | \$2,396 (\$15,281) | | Sacco
2013 ¹¹ | - | Medicare • 0-11 yrs: \$2955 • 12-17 yrs: \$2222 • ≥18 yrs: \$2384 Medicaid • 0-11 yrs: \$4548 • 12-17 yrs: \$4581 • ≥18 yrs: \$5154 | _ | Medicare • \$21,677 Medicaid • \$25,847 | | Vekeman
2015 ¹³ | - | \$14,677 (\$46,752) | \$2,331 (\$6,171) | \$4,509 (\$17,989) | | | | | 4. | | #### **Healthcare Costs – Age Variation** Total direct costs varied by age and insurance type. Medicare costs were highest in children aged 0-11 years (\$2,955) vs Medicaid costs that were consistently higher across all age groups (\$4,548 to \$5,154).11 #### **Healthcare Costs – Sex Variation** The average medication costs for males and females are similar (\$89 vs. \$95) but show a high variability in ranges (\$1-2 to \$1,000).6 #### **Loss of Productivity** - Six studies reported loss of productivity, from 35% of families with at least one caregiver quitting working to 40%¹⁰ of US respondents who reported quit their job. One US study reported a mean absenteeism due to medical visits of - One Australian study reported mean employment loss costs of \$3,735.7 In Europe, labor productivity losses ranged from €0 to €2,880 (SD €89,73).8 #### **Resource Use** FXS patients showed consistently higher healthcare utilization than those without FXS, with over 90% requiring outpatient care, 7-35% needing emergency services, and 2-13% requiring hospitalization. #### **Table 4. Resource Use** | Study | Inpatient visits – n (%) | Emergency Visits - n (%) | Outpatient visits – n (%) | |-------------------------------|---|--|---| | Bailey 2012 ⁶ | Males: 4 (2%)Females: 1 (2%) | Males: 19 (7%)Females: 0 (0%) | Males • ≥1 PCP visit: 274 (94%) • ≥1 specialist visit: 283 (97%) Females • ≥1 PCP visit: 52 (89%) • ≥1 specialist visit: 283 (97%) | | Nazareth
2015 ⁹ | With FXS: 93 (13%)Without FXS: 199 (6%) | With FXS: 243 (35%)Without FXS: 925 (27%) | With FXS: 644 (92%)Without FXS: 2,231 (64%) | | Raspa 2016¹ | - | - | ≥5 specialist visits in
past year: 147 (44%) | | | Medicare 74 (9%)Medicaid 90 (13%)PCP, primary care provider | - | Medicare 747 (95%)Medicaid 702 (97%) | - FXS patients require significantly longer hospital stays than non-FXS individuals, with Nazareth 2015 showing FXS patients average 3.5 days vs only 1.2 days for those without the condition. - Vekeman 2015 found FXS patients had higher hospitalization rates (allcause IRR: 1.23, FXS-related IRR:1.12) compared to a non-FXS controls. ## Table 5. Length of Hospitalization | Study | Patients | n/N (%) | Mean Length of Stay | |----------------------------|-------------|------------|--| | Bailey 2012 ⁶ | FXS Males | 4/292 (2%) | 1-2 nights | | | FXS Female | 1/58 (2%) | 2 nights | | Nazareth 20159 | FXS | NR | 3.53 days | | | Without FXS | NR | 1.17 days | | Vekeman 2015 ¹² | Overall FXS | NR | IRR all-cause: 1.23
IRR FXS-related: 1.12 | | | Non-FXS | NR | Reference | ## Limitations - The overall evidence is limited by a small number of eligible studies and restricted geographic diversity. - Three US-based analyses rely on the same 2011 caregiver survey which could derive in patient overlap and affect generalizability of the results. - Most data comes from high-income countries, with little to no representation from low- and middle-income settings. As a result, the economic burden of FXS in diverse healthcare systems and socioeconomic contexts remains largely unknown. - Because of the considerable methodological differences across studies in data sources, study designs, cost reporting and outcome measures the comparison in findings across studies was difficult. - Several studies had small sample sizes and relied on self-reported data which could lead to recall bias and limit precision of estimates. ## Conclusions - FXS places a heavy financial burden on healthcare systems and families, specially through non-medical costs like lost productivity. - Direct medical costs were often outweighed by societal costs; this highlights the needs of FXS patients across their lifespan. - Most of the available evidence comes from a small number of highincome countries and overlapping patient populations, offering only a limited view of the real-world impact. This means that this data is providing only a partial view of the global economic burden of FXS. - There's a clear need for more inclusive, globally representative and standardized research to fully understand the global economic impact of - A more comprehensive understanding of FXS burden could guide resource allocation and inform the development of strategies that better support families living with FXS around the world. #### References - Raspa M, et al. (2016). J Intellect Disabil Res, 60(1):29-41. - Chevreul K, et al. (2015). J Intellect Disabil Res, 59(12):1108–1120. - Page M, et al. (2021). BMJ, 372:n71. - Higgins J, et al. (2023). Cochrane Handbook for Systematic Reviews of Interventions, - Wells G, et al. (2000). The Newcastle-Ottawa Scale (NOS). Ottawa Hospital Research - Bailey DB, et al. (2012). J Dev Behav Pediatr, 33(9):705-712. - Baker EK, et al. (2023). J Autism Dev Disord, 53(4):1682-1692. - Chevreul K, et al. (2016). Eur J Health Econ, 17(S1):43–52. - Nazareth T, et al. (2016). Curr Med Res Opin, 32(3):405-416. - Ouyang L, et al. (2014). Res Dev Disabil, 35(7):1518-1527. - Sacco P, et al. (2013). Am Health Drug Benefits, 6(2):73-83. - Vekeman F, et al. (2015). Am J Intellect Dev Disabil, 120(5):444-459. #### Disclosure and Acknowledgements LM, AS, and RG are all employees of ICON plc.