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Indirect treatment comparisons (ITCs) are essential in HTA when direct head-to-head trials are unavailable. 
However, ITCs are susceptible to biases threatening their validity. This workshop will introduce attendees to the key 
principles of causal inference and treatment effect heterogeneity and explain how these principles can improve our 
understanding of the limitations of ITCs within the framework of HTA. Participants will learn why ITCs are 
“essentially observational findings across trials” (Cochrane Handbook) and how to critically evaluate their validity.



Motivation for the Use of ITC
• Direct (head-to-head) randomized clinical trials not always possible:

– Unfeasible/impractical
– Life-threatening conditions with high unmet need
– Unethical to enroll patients to a placebo control arm
– Observational studies needed => causal thinking

• HTA requires indirect treatment comparisons 
– RCTs usually don’t have all treatment arms desired for HTA
– In the absence of direct RCT comparisons versus all candidate comparators, 

indirect treatment comparisons (ITCs) across studies are required.
– ITCs are “essentially observational findings across trials, and may suffer the 

biases of observational studies, for example due to confounding” [Cochrane]
=> ITCs need causal thinking
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• Uwe Siebert: Introduction to key principles of causality, causal 
diagrams and methods.

• Arthur Chatton: Formal definition of causal effects using 
potential-outcomes framework; assumptions; types of causal 
estimators for SAT+ECA.

• Michael Webster-Clark: Role of effect measure, also 
determines the set of variables to be controlled for. 

• Harlan Campbell: How principles translate to ITC; 
transportability; different estimands; adjustments.

Overview
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Principles of Causality, Causal Diagrams and Causal Methods

Workshop, ISPOR 2025 Montreal, 05/14/2025: 
What Causal Inference Teaches Us About the Limitations of Indirect Treatment 

Comparisons for Health Technology Assessment

Uwe Siebert, MD, MPH, MSc, ScD

UMIT TIROL - University for Health Sciences and Technology, Hall in Tirol, Austria
& Harvard Chan School of Public Health, Boston, USA
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4 Key Elements of a Causal Health Decision Framework

1. Understanding Nature 

Develop DAGs to understand 
data-generating process and 

potential biases

2. Design
Use Target Trial Emulation to 

avoid self-inflicted biases

3. Analytic Methods
Watch out for time-varying 

confounding requiring 
g-methods

4. Support Clinical 
Guidelines/HTA

Feed long-term decision models 
with causal parameters
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Tx: Treatment
OC: Outcome
L: Covariate

Causal Diagrams 
(Directed Acyclic Graphs, DAGs)

L1

Tx L2 OC

L4

L5

Confounder

Mediator

L3
Collider

Graph is directed (arrows) and acyclic (no loops)
The total statistical association is represented by 
the sum of all open paths
There are frontdoor paths and backdoor paths
In the analysis, we must adjust (control) for open 
backdoor paths, to remove non-causal 
association (confounding)
Different types of variables …
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Tx: Treatment
OC: Outcome
L: Covariate

Causal Diagrams 
(Directed Acyclic Graphs, DAGs)

L1

Tx L2 OC

L4

L5

Confounder

Mediator

L3
Collider

Which variables should we control for?

Modern definition of confounding:
Open backdoor path

Adjustment:
Block (control/adjust for) all open backdoor paths

Rule:
Never control for the future of the treatment



DAG Examples from the Literature

Source: Internet
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Target Trial Emulation
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Target Trial 
Approach
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Design an observational study 
as if it was a randomized controlled 
experiment à develop protocol for a 
hypothetical RCT

“Do not look into the future”

By defining all steps, the potential of 
self-inflicted biases (time-related 
biases, selection bias) is reduced

Time zero (time of including patients 
(and data), duration of follow up, etc.
Example with bias assessment see: 
Kuehne et al., JCE 2022



Analysis plan

Outcomes

Start/end of follow-up

Randomized assignment

Treatment strategies

Target Trial Study Protocol

Eligibility criteria

Causal contrast(s) of interest

Research Question (PICO)

Hernán & Robins, Am J Epi 2014
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Publications with Target Trial Emulation

Hansford HJ et al., JAMA Network Open. 2023
https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2809945
Published under https://creativecommons.org/licenses/by/4.0/ 14

https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2809945
https://creativecommons.org/licenses/by/4.0/


Causal Inference Methods
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Motivation: Confounding

Initial Tumor stage is a common 
cause of prescribed Tx and Death

Death

Initial Tumor stage

Tx
Time-independent 

confounding
= “baseline confounding”

Traditional methods work 
(stratification, multivariable 

regression, propensity score etc.)

Traditional methods fail, 
à apply g-methods

Severity is a common cause of Tx and 
Death and is also affected by Tx

Death

Ongoing Severity of 
disease (biomarker)

Tx

Time-dependent 
confounding

= “post-baseline confounding”

Tx = Treatment

16

Confounder-
treatment 

feedback loop



Time-independent (Baseline) 
Confounding

• Traditional methods
ØRestriction
ØStratification
ØMultivariate modeling
ØMatching
ØPropensity score

• [g-Methods]

Time-dependent (Post-baseline) 
Confounding

• g-Methods
Øg-formula
Øg-estimation
Ø inverse probability weighting

• Further approaches:
ØDoubly robust methods (TMLE)

Quantitative Methods to Control for Confounding
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Causal Modeling
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Dijk SW, Korf M, Labrecque JA, Pandya A, Ferket BS, Hallsson LR, Wong JB, Siebert U, Hunink MGM. Directed Acyclic Graphs 
in Decision-Analytic Modeling: Bridging Causal Inference and Effective Model Design in Medical Decision Making. Med Decis 
Making. 2025 Apr;45(3):223-231. doi: 10.1177/0272989X241310898. 

Causal diagrams describe the causal 
relations between variables. We can use 
them to (1) build a causal natural history 
model and (2) to inform methods of 
empirical data analysis

Read more about how to match decision-
analytic models with causal diagrams in 
this paper …

New!

Causal Diagrams 
Informing Decision Models



• Make sure the research question is well defined
• Draw your DAG
• Perform a target trial emulation
• Use the correct estimators as parameters in your health- 

economic model

Causal Inference in Indirect Treatment
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uwe.siebert@umit-tirol.at
Web: www.htads.org

@uweSiebert9
 uwe-siebert9

Questions? Contact:

Thank you!
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Goals

To gain a general understanding of causal inference

�. Counterfactual framework
�. What is a causal effect
�. Propensity score
�. G-computation
�. Doubly robust estimator

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow , arthur.chatton.�@ulaval.ca �/��



Single arm trials

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow , arthur.chatton.�@ulaval.ca �/��



Counterfactual framework

Causal inference: Quantifying the effect of the treatment A on the outcome Y

But what does the "effect" mean?

) Estimand

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow , arthur.chatton.�@ulaval.ca �/��



Counterfactual framework

Each individual had two potential outcomes (assuming a binary A):

�. Ya=�: Outcome observed in a hypothetical world where all are treated (A=�)
�. Ya=�: Outcome observed in a hypothetical world where all are untreated

(A=�)

Only one is actually observed

A Y Y� Y�

� � ? �
� � � ?

Estimand = (Causal effect = contrast between Y� and Y�) in a de�ned population

• Examples: E(Ya=�)� E(Ya=�)
| {z }

ATE

or E(Ya=�|A = �)/E(Ya=�|A = �)
| {z }

ATT

) Causal effect is based on unmeasurable variables

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow , arthur.chatton.�@ulaval.ca �/��
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Counterfactual framework

Causal effect = concept, e.g., E(Y�)� E(Y�)

6=

Association = Statistical measure, e.g., E(Y|A = �]� E(Y|A = �)

Assumptions are needed to map these two quantities ) Identi�ability

Identi�ability

�. Consistency: Ai = a ) Yi = Ya
i

�. Exchangeability: Ya ?? A|X
�. Positivity: P(A = a|X = x) > � � �, 8x such as P(X = x) > �

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow , arthur.chatton.�@ulaval.ca �/��
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Counterfactual framework Some speci�cities of SAT

• ITT: main estimand in RCT
• SATs usually target the Per Protocol effect

) contrast between E(Ya=�,c̄=�) and E(Ya=�,c̄=�)
• Identi�ability assumptions must also apply for the censoring history C̄

• The external control group should be chosen to minimize potential
consistency violations

• Residual confounding is likely ) Adjusting on some X

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow , arthur.chatton.�@ulaval.ca 6/��



Counterfactual framework Adjusting on X

• FDA (����) and EMA (����) recommend adjusting on a few X prognostics
of Y to increase the statistical power

• This targets the Conditional Average Treatment Effect:
E(Y�|X = x)� E(Y�|X = x)

• Not really useful for non-collapsible measures, such as the OR/HR

• Causal estimators adjust on X and recover the ATE (RCT goal)

• Can be used in SAT to control residual confounding too

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow , arthur.chatton.�@ulaval.ca �/��



Causal estimators

Three “families” of causal estimators:

�. Propensity score (PS): Model A conditional on X to balance the arms

�. G-computation (or g-formula): Model Y conditional on A and X to predict Ya

�. Doubly robust estimators (DRE): Combine PS and g-computation to reduce
modelling assumptions

I will not speak about quasi-experimental approaches, such as IV, today.

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow , arthur.chatton.�@ulaval.ca 8/��



Causal estimators Propensity score

Goal of PS: balance the treatment arms to mimic an RCT

Can be used in various ways:

• Strati�cation on the PS
• Added as the covariate in a model
• Matching on the PS
• Weighting on the PS

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow , arthur.chatton.�@ulaval.ca �/��



Causal estimators Propensity score

General recipes:

�. Model e(X) = P(A = �|X) using for instance a logistic regression

Now for Matching:

�. Match treated and untreated individuals according to their e(Xi)

�. Model E(Y|A) on the resulting matched sample

While for Weighting (i.e., inverse probability weighting):

�. Compute the individuals’ weight ! as a function of e(Xi)

�. Model E(Y|A) on the whole sample, but weighted by !

The coef�cient of A will be the causal effect (the type of regression should
match the wanted contrast).
Use a sandwich estimator or bootstrap for the variance.

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow , arthur.chatton.�@ulaval.ca ��/��
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Causal estimators G-computation

Goal of g-computation: Simulate the counterfactual worlds

General recipe:

�. Model Q(A,X) = E(Y|A,C) using all individuals of the sample
�. Predict Ya = Q(a,Xi), 8a for each individuals
�. Average Ya over all individuals and contrast them to compute the estimand

of interest

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow , arthur.chatton.�@ulaval.ca ��/��



Causal estimators Pro and cons

• Positivity is directly checkable with PS, but g-computation may be more
robust to random violations

• PS and g-computation require a correct speci�cation of e(X) or Q(A,X),
resp.

• DREs relax this by requiring the correct speci�cation of one but not
necessarily both

• They also allow the use of machine learning for �tting these models, further
limiting the risk of misspeci�cation bias

• Several DREs exist; I will focus on the easiest one (IMHO)

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow , arthur.chatton.�@ulaval.ca ��/��



Causal estimators Doubly robust standardisation

Goal of doubly robust standardization: use PS weighting to mimic RCT, then use
g-computation to remove residual confounding

General recipe:

• Model e(X) = P(A = �|X) using for instance a logistic regression

• Compute the individuals’ weight ! as a function of e(Xi)

• Model Q(A,X) = E(Y|A,X) using all individuals of the sample, but the
model is weighted by !

• Predict Ya = Q(a,Xi), 8a for each individuals

• Average Ya over all individuals and contrast them to compute the estimand
of interest

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow , arthur.chatton.�@ulaval.ca ��/��



Takeaways

• Residual confounding in SAT can be controlled if measured

• Causal estimators are easily computable using standard statistical
software

• Quality of data is still crucial

To go further:

) Chatton and Rohrer (����)

Other readings:

• Review on matching schemes: Stuart (����)
• Tutorials on DREs:

• Binary outcome: Luque-Fernandez et al. (���8)
• Time-to-event outcome: Talbot et al. (����)

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow , arthur.chatton.�@ulaval.ca ��/��
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The academic core 
of Atrium Health

Table of contents
• What’s in an effect measure?
• Defining external validity
• Different elements of effect measures and external validity
• Conclusion
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The academic core 
of Atrium Health

What’s in an effect 
measure?



The academic core 
of Atrium Health

Two effect measure descriptions

• What is the effect of dabigatran on gastrointestinal bleeding?

• What is the 2-year risk difference for gastrointestinal bleeding for Medicare 
beneficiaries recently diagnosed with atrial fibrillation comparing initiating 
and staying on treatment for atrial fibrillation with dabigatran (vs warfarin)?

• Which of these…
• Is a well-defined causal effect?
• Could fit in the title of a journal article?

4



The academic core 
of Atrium Health

What makes for a well-defined causal effect?

• Somewhat obviously…
• Treatment of interest: dabigatran
• Referent or comparator: warfarin
• Outcome: mortality
• Intention-to-treat vs per-protocol: initiating and staying on treatment

• More subtly…
• The index date: recent diagnosis with atrial fibrillation
• The target population(s): Medicare beneficiaries with atrial fibrillation
• Scale of the effect: the risk difference
• Length of follow-up: 2 years
• Handling of competing events: allowed to occur (should be the default)

5



The academic core 
of Atrium Health

Deciding which effect to estimate

• Should always consider…
• Stakeholder opinions
• Potential for intractable confounding or selection bias
• Practical issues with data availability
• How they impact external validity (…hold that thought)

• Like almost everything in public health, this is a 
balancing act

6



The academic core 
of Atrium Health

Defining 
external 
validity



The academic core 
of Atrium Health

Crude external validity

• The effect in the study population equals 
the effect in the target population

• For the RD…
• E(Ya=1|Study) - E(Ya=0|Study) = 

E(Ya=1|Target) - E(Ya=0|Target) 

• Achieved via…
• Random sampling
• Homogeneity (if collapsible measure)

8



The academic core 
of Atrium Health

What is effect measure modification?

• Effect measure modification by a variable M occurs when the effect 
measure of interest varies across levels of M

• Mathematically,
• E(Ya=1|EMM=1) - E(Ya=0|EMM=1) ≠ E(Ya=1|EMM=0) - E(Ya=0|EMM=0) 

• Several different types of effect measure modification, all threatening 
external validity

• If M represents “population”, we lack crude external validity on either the 
RD or RR scale in all of these scenarios

A Y

M

A Y

M L

A Y

M L

A Y

M L

Q
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The academic core 
of Atrium Health

Conditional external validity

• Conditional on an adjustment set L, the effect measure from the study 
population equals the effect measure in the target population

• For the RD:
• E(Ya=1|Study,L=t) - E(Ya=0|Study,L=t) = E(Ya=1|Target) - E(Ya=0|Target) 

• Where L=t means that we have adjusted for L via:
• Weighting
• The g formula and outcome modeling
• Doubly robust approaches

A Y

M L

A Y

M L

A Y

M L

Q
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The academic core 
of Atrium Health

Different elements of effect 
measures and external validity



The academic core 
of Atrium Health

The outcome and follow-up duration

• Changing the outcome can directly impact external validity
• (for pretty obvious reasons)

• Outcomes where the treatment truly has no effect will always have crude 
external validity

• This can apply to short-term outcomes for treatments with long latency 
periods, as well

Dabigatran vs warfarin Airplane accidents

Study participation Country of residence

Dabigatran vs warfarin G.I Bleed

Study participation Country of residence

12



The academic core 
of Atrium Health

Index date
• Some treatments vary in safety/effectiveness over time

• Thrombolytics for stroke prevention
• Different types of rehabilitation
• Treatments for Parkinson’s
• Everything in oncology

• This often manifests as effect measure modification, especially in the case 
of critical windows, and may need to be accounted for

FOLFOX vs 5-FU Mortality

Study participation Colon cancer stage

13



The academic core 
of Atrium Health

The treatment and comparator

• Variations between study and target population interventions can threaten 
external validity due to issues with consistency

• Consider…
• Financial incentives (or support) in the study that aren’t present in the target
• Differences in surveillance or lifestyle interventions
• Actual differences between formulations (e.g., extended release)

• Can sometimes be fixed if an intermediate variable has been measured

Aspirin Cardiovascular mortality

Study participation Frequency of physician visits

14



The academic core 
of Atrium Health

Handling of competing events

Option 1: Censoring
• Censoring individuals who experience 

competing events estimates an effect 
where you can prevent all those events

• When populations differ in their risk of the 
competing event, this makes achieving 
external validity easier

Option 2: Allowing to occur
• Allowing competing events to occur 

estimates a much simpler to describe 
causal effect

• You may also need to address differences 
in the risk of the competing event between 
populations, however

• …and it complicates analyses

Prostate cancer screening Prostate cancer mortality

Study participation Age

Surgical mortality

15



The academic core 
of Atrium Health

Intention-to-treat vs per-protocol follow-up
• Intention-to-treat effects face external validity issues if adherence and 

predictors of adherence differ between populations
• This can create additional effect measure modification

• Per-protocol effects condition away this source of potential effect 
measure modification by default

• But will need to address potential informative censoring resulting from deviations from 
the protocol

Statin use All-cause mortality

Adherence to statin therapy

Healthy lifestyleStudy participation

16



The academic core 
of Atrium Health

Scale of the effect

• The scale of the effect has implications for adjustment sets
• The risk difference (RD) is a weighted average of each RD in 

the population, with weights based on the prevalence
• Requires variables that directly interact with treatment on the difference 

scale, rather than overall/marginal EMMs

• The risk ratio (RR) is a weighted average of the RRs, with 
weights based on the prevalence and the risk of the outcome

• Requires variables that interact on the ratio scale and variables that don’t 
interact but are associated with the outcome

• The odds ratio (OR) isn’t a weighted average of anything
• Requires all variables associated with the outcome

17
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Conclusion



The academic core 
of Atrium Health

External validity is complex
• Every decision you make about the effect measure you are estimating has 

implications for its external validity
• Conditions to achieve external validity are as complicated, if not more 

complicated, than conditions to achieve internal validity
• Sometimes, the safe choice for internal validity is not the safe choice for 

external validity
• Placebo groups?
• Intention-to-treat analyses?

• Thinking through all of these elements is a major part of generalizing or 
transporting effect estimates
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The academic core 
of Atrium Health

A closing question
• Which do you prioritize when designing your studies and 

choosing an effect measure?

A. Internal validity

B. External validity

C. Overall validity

20



The academic core 
of Atrium Health

Questions

21
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The academic core 
of Atrium Health

Adjustment for external vs internal validity

Internal validity
• Weight the exposed and unexposed to a 

common population (ATE, ATT, ATU) 
based on predicted treatment probability

• Use outcome models built in the exposed 
and unexposed to predict outcomes in a 
common population

• Combine treatment and outcome 
models to obtain doubly-robust estimates

External validity
• Weight the study population to resemble 

the target population of interest based 
on predicted “sampling” probability

• Use outcome models built in the study 
population to predict outcomes in the 
target population of interest

• Combine sampling and outcome models 
to obtain doubly-robust estimates
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A question

When conducting ITCs for HTA, why is an understanding of 
causal inference most important?

A. …to select the best estimator for the analysis.

B. …to ensure we are adjusting for all the necessary variables 
for unbiased estimation.

C. …to ensure we are targeting the correct estimand of interest.



• Example 1: An unanchored ITC
• How do we adjust for confounders when IPD is unavailable?

• MAIC or STC?
• or augmented MAIC for doubly-robust estimation?

• Example 2: An anchored ITC  
• Different effect measure scales require adjusting for different variables.

• Non-collapsible effect measures depend on the distribution of purely prognostic factors in the study 
population. 

• But the bias from ignoring purely prognostic factors will typically be small.

• Example 3: A three study NMA
• What is the causal estimand of interest? 

• Marginal or population-average conditional?

ITCs for HTA require causal thinking: 3 examples



EXAMPLE 1Unanchored Indirect Treatment Comparison 
without full IPD

Observational Study
with IPD available for both arms

Single Arm Trial 1
IPD

Single Arm Trial 2
IPD not available 

(only aggregate-level data)

target population is ATC

treated control

treated control

Unanchored ITC
with IPD only available for treated



EXAMPLE 1

Campbell, H, Remiro-Azócar, A., (2025). Doubly robust augmented weighting estimators for the analysis of externally controlled single-arm 
trials and unanchored indirect treatment comparisons. arXiv preprint, arXiv:2505.00113

• For the ATC, “balancing” approaches to weighting 
(e.g., MAIC or entropy balancing), can enhance 
performance relative to standard “modeling” 
approaches (i.e., propensity score weighting).

• The augmented MAIC  is doubly robust and has 
higher precision than non-augmented weighting 
estimators when the outcome model is correctly 
specified.

• The augmented MAIC achieves near-identical 
precision to G-computation/STC, which can have 
substantial bias where the outcome model is 
misspecified. 



Different causal estimators require different 
assumptions

EXAMPLE 1

The target estimand is the effect of A vs B in the Study 2 
population (i.e., the ATC) on the marginal log-odds ratio 
scale. 

Four baseline covariates have been identified as 
potential confounders:
• age 
• sex
• ECOG 
• smoking status

Unanchored Indirect Treatment Comparison

Study 1
N = 500

Study 2
N = 300

treated control

IPD not availableIPD



EXAMPLE 1

Age

Objective 
Response

Sex

Treatment
(Study Participation)

ECOG
SmokingDAG:

Different causal estimators require different 
assumptions

Unanchored Indirect Treatment Comparison

Study 1
N = 500

Study 2
N = 300

treated control

IPD not availableIPD

The target estimand is the effect of A vs B in the Study 2 
population (i.e., the ATC) on the marginal log-odds ratio 
scale. 

Four baseline covariates have been identified as 
potential confounders:
• age 
• sex
• ECOG 
• smoking status



• Matching-adjusted indirect comparison (MAIC)
• Weighting method similar to propensity score estimators
• Assumption: Requires correct specification of the implied trial 

assignment model

• Simulated treatment comparison (STC)
• Model-based standardization method similar to G-computation
• Assumption: Requires correct specification of the outcome model

• Doubly robust augmented MAIC estimator (DR)
• Assumption: Requires either the propensity score model or the 

outcome model be correct, but not necessarily both

EXAMPLE 1
Three different estimators



EXAMPLE 1
Results

• The intervention improves objective 
response versus the control.

• DR point estimate is not meaningfully 
different than the MAIC or STC point 
estimates.

• DR approach has slightly increased 
uncertainty than STC.

• This loss of precision seems a relatively 
minor price to pay for robustness to 
model misspecification.

Naïve

MAIC

STC

DR

MAIC vs STC vs DR



Anchored Indirect Treatment Comparison

EXAMPLE 2

Ratio of non-smokers 
to smokers is 1:1

Ratio of non-smokers 
to smokers is 5:1

Two randomised  trials with three treatments !, ", #, in populations where the prevalence of 
smoking varies substantially.

IPD is available IPD is not available 

Riley, R. D., Dias, S., Donegan, S., Tierney, J. F., Stewart, L. A., Efthimiou, O., & Phillippo, D. M. (2023). Using individual participant data to improve network meta-
analysis projects. BMJ evidence-based medicine, 28(3), 197-203.



Transportability for Indirect Treatment Comparisons

Anchored Indirect Treatment Comparison

EXAMPLE 2

C BA

Study 1
N = 400

Study 2
N = 6000

• Outcome of interest: the number of individuals who 
respond to treatment.

• IPD is available for Study 1 but not for Study 2.

• Smoking is prognostic but not effect-modifying (i.e., 
treatment is same for smokers and non-smokers). 



Transportability for Indirect Treatment Comparisons

Anchored Indirect Treatment Comparison

This requires transporting the effect of 
treatment C in the Study 1 population to 
the Study 2 population.

Objective: Estimate the relative treatment 
effect of C vs B in the Study 2 population 

We need to think about 
external validity!

EXAMPLE 2

C BA

Study 1
N = 400

Study 2
N = 6000

• Outcome of interest: the number of individuals who 
respond to treatment.

• IPD is available for Study 1 but not for Study 2.

• Smoking is prognostic but not effect-modifying (i.e., 
treatment is same for smokers and non-smokers). 



Study 1

13

Binary outcome 
(Response) Non-smokers Smokers Overall

Response
Yes

Response
No

Response
Yes

Response
No

Response
Yes

Response
No

Treatment C 90 10 50 50 140 60

Treatment A 50 50 10 90 60 140

Risk difference: C/A 0.9 – 0.5 = 0.4 0.5 – 0.1 = 0.4 0.7 – 0.3 = 0.4

Marginal odds ratio: C/A
90/10
50/50 = 9 50/50

10/90 = 9 140/60
60/140 =	5.4

Ratio of non-smokers to smokers is 1:1

EXAMPLE 2



Study 1

14

Binary outcome 
(Response) Non-smokers Smokers Overall

Response
Yes

Response
No

Response
Yes

Response
No

Response
Yes

Response
No

Treatment C 90 10 50 50 140 60

Treatment A 50 50 10 90 60 140

Risk difference: C/A 0.9 – 0.5 = 0.4 0.5 – 0.1 = 0.4 0.7 – 0.3 = 0.4

Marginal odds ratio: C/A
90/10
50/50 = 9 50/50

10/90 = 9 140/60
60/140 =	5.4

Ratio of non-smokers to smokers is 1:1

EXAMPLE 2

9 = 9	 ≠ 5.4	 →      Non-collapsibility!



Study 2

15

Binary outcome 
(Response) Non-smokers Smokers Overall

Response
Yes

Response
No

Response
Yes

Response
No

Response
Yes

Response
No

Treatment B 2250 250 250 250 2500 500

Treatment A 1250 1250 50 450 1300 1700

Risk difference: B/A 0.9 – 0.5 = 0.4 0.5 – 0.1 = 0.4 0.83 – 0.43 = 0.4

Marginal odds ratio: B/A 2250/250
1250/1250

= 9
250/250
50/450 = 9 2500/500

1300/1700
	=	6.5

Ratio of non-smokers to smokers is 5:1

EXAMPLE 2



Study 2

16

Binary outcome 
(Response) Non-smokers Smokers Overall

Response
Yes

Response
No

Response
Yes

Response
No

Response
Yes

Response
No

Treatment B
5000 1000

2500 500

Treatment A 1300 1700

Risk difference: B/A 0.9 – 0.5 = 0.4 0.5 – 0.1 = 0.4 0.83 – 0.43 = 0.4

Marginal odds ratio: B/A 2250/250
1250/1250

= 9
250/250
50/450 = 9 2500/500

1300/1700
	=	6.5

Ratio of non-smokers to smokers is 5:1

EXAMPLE 2



Marginal Risk Difference of A vs. B in Study 2 population

“Unadjusted” model

!RD./012 	= !RD3/012 − !RD3.012
Estimated Marginal Risk Difference:

Ignoring data on 
smoking status

!RD./012 = 0.4	 − 0.4 = 0.0

Conclusion:  There is no difference between A and B in the Study 2 population

EXAMPLE 2
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“Unadjusted” estimator

log !OR./012 = log !OR3/012 − log !OR3.012
Estimated Marginal Odds Ratio:

Population-adjusted estimators

!OR./012 = exp log(6.5) − log(6.5) = 	 1

STC

Ignoring data on 
smoking status

Using data on 
smoking status

!OR./012 = exp log(5.4) − log(6.5) = 0.83

!OR./012 = exp log(6.5) − log(6.5) = 	 1

Conclusion:  Treatment C is worse than treatment B in the Study 2 population

Conclusion:  There is no difference between C and B in the Study 2 population

EXAMPLE 2

Assumption:  Requires correct specification of the implied propensity score model

Assumption:  Requires correct specification of the outcome model

MAIC

Marginal Odds Ratio of A vs. B in Study 2 population



The marginal odds ratio depends on the distribution of prognostic factors in the study population!

EXAMPLE 2
Marginal odds ratio vs conditional odds ratio

Contrary to current recommendations?

• NICE DSU TSD 18: “To avoid loss of precision 
due to over-matching, no prognostic variables 
which are not also effect modifiers should be 
adjusted for, as variables which are purely 
prognostic do not affect the estimated relative 
treatment effect.”1

• Vo (2023): purely prognostic variables can be 
“safely excluded.”2

1 - Phillippo DM, Ades AE, Dias S, Palmer S, Abrams KR, Welton KJ. NICE DSU Technical Support Document 18: Methods for population-adjusted indirect comparisons in 
submissions to NICE. 2016.
2 - Vo TT. A cautionary note on the use of G-computation in population adjustment. Research Synthesis Methods. 2023; doi:10.1002/jrsm.1621 

Bias = 
0.83 



What if we ignore purely prognostic variables?
EXAMPLE 2

Study 2

Study 1



What if we ignore purely prognostic variables?

The bias will only be small 
unless:

• The ratio of non-smokers to 
smokers is very different in the 
two studies 

• The predictive effect of 
smoking is strong

EXAMPLE 2

Study 2

Study 1
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Study 2

Study 1

Study 2 Study 1

Population-adjusted conditional odds ratio Marginal odds ratio

The marginal odds ratio depends on the distribution of prognostic factors in the study population!

EXAMPLE 2
Marginal odds ratio vs conditional odds ratio



Network Meta-Analysis

EXAMPLE 3

Ratio of non-smokers to smokers is 3:1 in all three studies

Three trials comparing four treatments 8, 9, :, and ;.

Study 1 Study 2

Study 3



Marginal vs conditional effects

Network Meta-Analysis

EXAMPLE 3

• Outcome of interest: the number of individuals who 
experience disease progression.

• Smoking status is prognostic and effect-modifying.

B CA
N = 2000 N = 2000

D

N = 2000



Marginal vs conditional effects

Network Meta-Analysis

Best treatment for who?

Objective: Rank the treatments according to 
their effectiveness

We need to think about the 
causal question of interest.

EXAMPLE 3

B CA
N = 2000 N = 2000

D

N = 2000

• Outcome of interest: the number of individuals who 
experience disease progression.

• Smoking status is prognostic and effect-modifying.



EXAMPLE 3

Phillippo, D. M., Remiro-Azócar, A., Heath, A., Baio, G., Dias, S., Ades, A. E., & Welton, N. J. (2024). Effect modification and non-collapsibility leads to conflicting 
treatment decisions: a review of marginal and conditional estimands and recommendations for decision-making. arXiv preprint arXiv:2410.11438.



Study Treatment Non-smokers
(N=1500)

Smokers
(N=500)

Overall
(N=2000)

Progression
Yes

Progression
No

Progression
Yes

Progression
No

Progression
Yes

Progression
No

Study 1 A 202 548 156 94 358 642

Study 1 B 89 661 42 208 131 869

Marginal odds ratio: B/A
89/661

202/548 = 0.37 42/208
156/94 = 0.12 131/869

358/642
 =	>. ?@

Population-average 
conditional odds ratio: B/A exp(67889888 log 0.37 + :788

9888 log 0.12 ) = >. ?D

Study 1
EXAMPLE 3



Based on the marginal odds ratios, treatment B is the best

Study Treatment Non-smokers
(N=4500)

Smokers
(N=1500)

Overall
(N=6000)

Progression
Yes

Progression
No

Progression
Yes

Progression
No

Progression
Yes

Progression
No

Study 1 A 202 548 156 94 358 642

Study 1 B 89 661 42 208 131 869

Marginal odds ratio: B/A
89/661

202/548 = 0.37 42/208
156/94 = 0.12

131/869
358/642

 =	&. ()

Study 2 A 202 548 156 94 358 642

Study 2 C 13 737 144 106 157 843

Marginal odds ratio: C/A
13/737
202/548 = 0.05 144/106

156/94 = 0.82
157/843
358/642 = &. 11

Study 3 A 202 548 156 94 358 642

Study 3 D 137 613 6 244 143 857

Marginal odds ratio: D/A
137/613
202/548 = 0.61 6/244

156/94 = 0.01
143/857
358/642 = &. 1&

EXAMPLE 3



Study Treatment Non-smokers
(N=4500)

Smokers
(N=1500)

Overall
(N=6000)

Progression
Yes

Progression
No

Progression
Yes

Progression
No

Progression
Yes

Progression
No

Study 1 A 202 548 156 94 358 642
Study 1 B 89 661 42 208 131 869

Marginal odds ratio: B/A
89/661

202/548 = 0.37 42/208
156/94 = 0.12 131/869

358/642
 =	0.27

Pop-avg conditional odds ratio: B/A exp(!"##$### log 0.37 + %"##
$### log 0.12 ) = 0.28

Study 2 A 202 548 156 94 358 642
Study 2 C 13 737 144 106 157 843

Marginal odds ratio: C/A
13/737
202/548 = 0.05 144/106

156/94 = 0.82 157/843
358/642 = 0.33

Pop-avg conditional odds ratio: C/A exp(!"##$### log 0.05 + %"##
$### log 0.82 ) = 0.10

Study 3 A 202 548 156 94 358 642
Study 3 D 137 613 6 244 143 857

Marginal odds ratio: D/A
137/613
202/548 = 0.61 6/244

156/94 = 0.01 143/857
358/642 = 0.30

Pop-avg conditional odds ratio: D/A exp(!"##$### log 0.61 + %"##
$### log 0.01 ) = 0.24

Based on the conditional odds ratios, treatment B is the worst EXAMPLE 3

Rankings

1. Treatment B
2. Treatment D
3. Treatment C

1. Treatment C
2. Treatment D
3. Treatment B



EXAMPLE 3

• The marginal effect results in a decision that minimizes the number of events overall.

• The population average conditional effect results in a decision that is optimal for the 
greatest number of individuals.

• When there is an effect modifier, marginal and conditional effects can lead to conflicting 
treatment rankings.

Also:
• Conditional effects can be transported to a different target population- not so easy with marginal 

effects.

• Estimating conditional effects typically requires IPD or additional assumptions. 
• MAIC and STC estimators can only obtain marginal effect estimates for the target population defined by 

the study for which IPD is not available.
• ML-NMR estimators can obtain conditional effects but require an additional “shared effect-modifier” 

assumption.

Marginal and conditional answer two different 
questions



“For decision making, the marginal treatment 
effect represents the effect of moving everyone 
within the target population from treatment with 
midostaurin to treatment with quizartinib.”

“Population-average conditional treatment 
effects are specific to a target population with a 
given distribution of treatment-effect modifier 
characteristics and are interpreted as the average 
of the individual-level treatment effects in the 
population, i.e. the average effect of moving each 
individual within the target population from 
treatment with midostaurin to treatment with 
quizartinib.”

Nevitt, S. J., Phillippo, D. M., Hodgson, R., Welton, N. J., & Dias, S. (2025). Application of Multi-level Network Meta-Regression in the NICE Technology Appraisal of Quizartinib 
for Induction, Consolidation and Maintenance Treatment of Newly Diagnosed FLT3-ITD-Positive Acute Myeloid Leukaemia: An External Assessment Group 
Perspective. PharmacoEconomics, 43(3), 243-247.

EXAMPLE 3
Recent perspectives



“Senn argues that “we usually treat individuals 
not population [… but] reimbursement decisions in 
HTA are typically made on populations not single 
patients.”

“The target population of interest is not 
necessarily broad. Often, it is highly selected and 
takes into account specific patient characteristics. 
For instance, the final scope of a health 
technology appraisal for abemaciclib (TA810), 
recently published by the National Institute for 
Health and Care Excellence, describes the target 
population as  ‘adults with hormone 
receptor-positive, HER2-negative, node-positive 
early breast cancer after definitive surgery of the 
primary breast tumor at high-risk of recurrence.’”

Recent perspectives

Senn S. Conditions for success and margins of error: estimation in clinical trials. Stat Med. 2022.
Remiro-Azócar, A. (2022). Some considerations on target estimands for health technology assessment. Statistics in Medicine, 41(28), 5592.

EXAMPLE 3



Unanchored ITC 
across different 
populations

Anchored ITC 
across different 
populations

Anchored NMA across 
homogeneous 
populations

Risk difference Prognostics and effect 
modifiers

Effect modifiers Nothing

Population-average 
conditional odds ratio

Prognostics and effect 
modifiers

Effect modifiers Effect modifiers

Marginal odds ratio Prognostics and effect 
modifiers

Prognostics and 
effect modifiers*

Nothing

*Failure to adjust for purely prognostic factors will likely result in only minimal bias.

What do we need to adjust for?

EXAMPLE 3EXAMPLE 2EXAMPLE 1



• Example 1: An unanchored ITC
• How do we adjust for covariates when IPD is unavailable?

• MAIC or STC?
• or augmented MAIC for doubly-robust estimation?

• Example 2: An anchored ITC  
• Different effect measure scales require adjusting for different variables.

• Non-collapsible effect measures depend on the distribution of purely prognostic factors in the study 
population. 

• But the bias from ignoring purely prognostic factors will typically be small.

• Example 3: A three study NMA
• What is the causal estimand of interest? 

• Marginal or population-average conditional?

ITCs for HTA require causal thinking: 3 examples

Thank you!



Study 1

35

Binary outcome 
(Response) Non-smokers Smokers Overall

Response
Yes

Response
No

Response
Yes

Response
No

Response
Yes

Response
No

Treatment A 90 10 50 50 140 60

Treatment C 50 50 10 90 60 140

Risk difference: A/C 0.9 – 0.5 = 0.4 0.5 – 0.1 = 0.4 0.7 – 0.3 = 0.4

Marginal odds ratio: B/C
90/10
50/50 = 9 50/50

10/90 = 9 140/60
60/140 =	5.4

Conditional odds ratio: B/C
90/10
50/50 = 9 90/10

50/50 = 9 0.5×9 + 0.5×9 = 9

Ratio of non-smokers to smokers is 1:1

EXAMPLE 2



Study 2

36

Binary outcome 
(Response) Non-smokers Smokers Overall

Response
Yes

Response
No

Response
Yes

Response
No

Response
Yes

Response
No

Treatment B 2250 250 250 250 2500 500

Treatment C 1250 1250 50 450 1300 1700

Risk difference: A/C 0.9 – 0.5 = 0.4 0.5 – 0.1 = 0.4 0.83 – 0.43 = 0.4

Marginal odds ratio: B/C 2250/250
1250/1250

= 9
250/250
50/450 = 9 2500/500

1300/1700
	=	6.5

Conditional odds ratio: B/C
90/10
50/50 = 9 90/10

50/50 = 9 0.5×9 + 0.5×9 = 9

Ratio of non-smokers to smokers is 5:1

EXAMPLE 2



Study Treatment Non-smokers
(N=4500)

Smokers
(N=1500)

Overall
(N=6000)

Progression
Yes

Progression
No

Progression
Yes

Progression
No

Progression
Yes

Progression
No

Study 1 A 202 548 156 94 358 642
Study 1 B 89 661 42 208 131 869

Marginal risk difference: B/A -0.151 -0.456 -0.227

Pop avg conditional risk 
difference: B/A

"#$$
%$$$ -0.151 + &#$$

%$$$ -0.456 =	-0.227

Marginal odds ratio: B/A
89/661

202/548 = 0.37 42/208
156/94 = 0.12 131/869

358/642
 =	0.27

Pop avg conditional odds ratio: 
B/A exp(!"##$### log 0.37 + %"##

$### log 0.12 ) = 0.28

EXAMPLE 3
Study 1



Study Treatment Non-smokers
(N=4500)

Smokers
(N=1500)

Overall
(N=6000)

Progression
Yes

Progression
No

Progression
Yes

Progression
No

Progression
Yes

Progression
No

Study 1 A 202 548 156 94 358 642
Study 1 B 89 661 42 208 131 869

Risk difference: B/A -0.151 -0.456 -0.227

Marginal odds ratio: B/A
89/661

202/548 = 0.37 42/208
156/94 = 0.12 131/869

358/642
 =	0.27

Conditional odds ratio: B/A exp(!"##$### log 0.37 + %"##
$### log 0.12 ) = 0.28

Study 2 A 202 548 156 94 358 642
Study 2 C 13 737 144 106 157 843

Risk difference: C/A -0.252 -0.048 -0.201

Marginal odds ratio: C/A 0.05 0.82 0.33

Conditional odds ratio: C/A exp(!"##$### log 0.05 + %"##
$### log 0.82 ) = 0.10

Study 3 A 202 548 156 94 358 642
Study 3 D 137 613 6 244 143 857

Risk difference: D/A -0.087 -0.600 -0.215

Marginal odds ratio: D/A 0.61 0.01 0.30

Conditional odds ratio: D/A exp(!"##$### log 0.61 + %"##
$### log 0.01 ) = 0.24

Rankings

1. Treatment B
2. Treatment D
3. Treatment C

1. Treatment C
2. Treatment D
3. Treatment B

1. Treatment B
2. Treatment D
3. Treatment C


