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Indirect treatment comparisons (ITCs) are essential in HTA when direct head-to-head trials are unavailable.
However, ITCs are susceptible to biases threatening their validity. This workshop will introduce attendees to the key
principles of causal inference and treatment effect heterogeneity and explain how these principles can improve our
understanding of the limitations of ITCs within the framework of HTA. Participants will learn why ITCs are
“essentially observational findings across trials” (Cochrane Handbook) and how to critically evaluate their validity.



Motivation for the Use of ITC

» Direct (head-to-head) randomized clinical trials not always possible:
— Unfeasible/impractical
— Life-threatening conditions with high unmet need
— Unethical to enroll patients to a placebo control arm
— Observational studies needed => causal thinking

« HTA requires indirect treatment comparisons
— RCTs usually don'’t have all treatment arms desired for HTA

— In the absence of direct RCT comparisons versus all candidate comparators,
indirect treatment comparisons (ITCs) across studies are required.

— ITCs are “essentially observational findings across trials, and may suffer the
biases of observational studies, for example due to confounding” [Cochrane]

=> ITCs need causal thinking
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Overview

Uwe Siebert: Introduction to key principles of causality, causal
diagrams and methods.

Arthur Chatton: Formal definition of causal effects using
potential-outcomes framework; assumptions; types of causal
estimators for SAT+ECA.

Michael Webster-Clark: Role of effect measure, also
determines the set of variables to be controlled for.

Harlan Campbell: How principles translate to ITC;
transportability; different estimands; adjustments.



Principles of Causality, Causal Diagrams and Causal Methods
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4 Key Elements of a Causal Health Decision Framework

4. Support Clinical
Guidelines/HTA

Feed long-term decision models
with causal parameters
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Tx: Treatment

Causal Diagrams 06 Outooma
(Directed Acyclic Graphs, DAGSs) L:  Covariate

Graph is directed (arrows) and acyclic (no loops) |_1
The total statistical association is represented by A/Confounder\A

the sum of all open paths Tx — |_ —— 0OC

There are frontdoor paths and backdoor paths oS
In the analysis, we must adjust (control) for open

Comder
backdoor paths, to remove non-causal
association (confounding)

Different types of variables ...
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Causal Diagrams 0G: Outoome.

(Directed Acyclic Graphs, DAGSs) L:  Covariate
Which variables should we control for? / L1 \
Modern definition of confounding: Confounder
Open backdoor path ITX— L — 0OC

Medlator
Adjustment:
Block (control/adjust for) all open backdoor paths Co”.der
Rule:
Never control for the future of the treatment

3, 30 5
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DAG Examples from the Literature

Age
Risky
behaviour
Parental education
Smeking NN
Screen time —— Physical activity———— Obesity
Alcohol
intake
Self-harm
Dark green Stomach
vegetable > cancer
intake

T !
T A\

I Metal mixtures (including but not limited to: iAs, Mn, U, CGM]%
» o
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Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available

Miguel A. Hernan* and James M. Robins

* Correspondence to Dr. Miguel A. Hernan, Department of Epidemiology, 677 Huntington Avenue, Boston, MA 02115
(e-mail: miguel_hernan@post.harvard.edu).

Initially submitted December 9, 2014, accepted for publication September 8, 2015.

Design an observational study
o as if it was a randomized controlled

“Do not look into the future”

°—|  experiment = develop protocol for a
hypothetical RCT
. . . Time zero (time of including patients
By d_eflmng a”_ steps, _the pOtentlaI of (and data), duration of follow up, etc.
‘ Se|f-lnﬂICted bIaSGS (tlme'related Examp|e with bias assessment see:
biases, selection bias) is reduced Kuehne et al., JCE 2022
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Target Trial Study Protocol

| Research Question (PICO) ‘

| Eligibility criteria |

| Treatment strategies ‘

| Randomized assignment ‘

| Start/end of follow-up ‘

| Outcomes ‘

| Causal contrast(s) of interest ‘

Hernan & Robins, Am J Epi 2014 | Analysis plan

UMITio oy



UMIT ko0 @

Publications with Target Trial Emulation

Figure 2. Number of Explicit Emulations of a Target Trial Included in Review Published per Year
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Hansford HJ et al., JAMA Network Open. 2023
https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2809945
Published under https://creativecommons.org/licenses/by/4.0/

20222
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Tx = Treatment

Motivation: Confounding

Confounder- OﬂgOlng Severlty Of
Initial Tumor stage treatment disease (biomarker)
/ \ feedback loop / \
» Death » Death
Time-independent Time-dependent
Co'nfounding . confounding
= “baseline confounding” = “post-baseline confounding”
Initial Tumor stage is a common Severity is a common cause of Tx and
cause of prescribed Tx and Death Death and is also affected by Tx
Traditional methods work Traditional methods fail,
(stratification, multivariable - apply g-methods

regression, propensity score etc.)

CEE
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Quantitative Methods to Control for Confounding

Time-independent (Baseline) Time-dependent (Post-baseline)

Confounding Confounding
 Traditional methods * g-Methods
» Restriction » g-formula
» Stratification » g-estimation
» Multivariate modeling » inverse probability weighting
» Matching

* Further approaches:

» Propensity score
» Doubly robust methods (TMLE)

* [g-Methods]
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Causal Diagrams

Causal diagrams describe the causal
relations between variables. We can use
them to (1) build a causal natural history
model and (2) to inform methods of
empirical data analysis

Read more about how to match decision-
analytic models with causal diagrams in
this paper ...

Dijk SW, Korf M, Labrecque JA, Pandya A, Ferket BS, Hallsson LR, Wong JB, Siebert U, Hunink MGM. Directed Acyclic Graphs
in Decision-Analytic Modeling: Bridging Causal Inference and Effective Model Design in Medical Decision Making. Med Decis
Making. 2025 Apr;45(3):223-231. doi: 10.1177/0272989X241310898.
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New!

Tutorial M
utoria Med ision Making

Medical Decision II.'\nh(

.‘Ul" Vol 45(
Directed Acyclic Graphs in Decision-Analytic ororc [ =
Modeling: Bridging Causal Inference and S com ot pemions

DOL 10.1177/0272959X241 310898

Effective Model Design in Medical Decision Jogrnah ssgepas cam hame
. S Sage
Making

Stijntje W. Dijk, Maurice Korf, Jeremy A. Labrecque, Ankur Pandya(,
Bart S. Ferket, Lara R. Hallsson, John B. Wong, Uwe Siebert(, and
M. G. Myriam Hunink

Decision-analytic models (DAMs) are essentially informative yet complex tools for solving questions in medical deci-
sion making. When their complexity grows, the need for causal inference techniques becomes evident as causal rela-
tionships between variables become unclear. In this methodological commentary, we argue that graphical
representations of assumptions on such relationships, directed acyclic graphs (DAG: n enhance the transparency
of decision models and aid in parameter selection and estimation through visually specifying backdoor paths (i.e.,
potential biases in parameter estimates) and visually clarifying structural modeling choices of frontdoor paths (i.e.,
the effect of the model structure on the outcome). This commentary discusses the benefit of integrating DAGs and
DAMs in medical decision making and in particular health economics with 2 applications: the first examines statin
use for prevention of cardiovascular disease, and the second considers mindfulness-based interventions for students’
stress. Despite the potential application of DAGs |n the dq.usmn science framework. challenges remain. including

simplicity, defining the scope of a DAG, d ausal aspects, and limited data availability
or quality. Broader adoption of DAGs in decision science requires full-model applications and further debate.
Highlights
e Our y prog the application of directed acyclic graphs (DAGs) in the design of decision-
analytic models, offering hers a and d tool to enh: and
by bndg\ng lhe gap between causal inference and model design in medical decision making.
® Thep ples in this amcle hy the ive effect DAGscan have on model structure,
P lection, and the lusions on effecti and cost
® This methodological article invites a broader ion on decisi deling choices ded in causal
assumptions.
Keywords
b dical technology causality, costs and cost analysis, decision making, decision support techniques,
d logic factors, epidemiologic methods, research design
Corresponding Author
Date received: May 21, 2024; accepted: November 25, 2024 M. G. Myriam Hunink, Department of Epidemiology. Erasmus Uni-

versity Medical Center, PO Box 2040, Rotterdam, 3000CA, The Neth-
erlands. (m.hunink @ erasmusme.nl)

19




Causal Inference in Indirect Treatment

Make sure the research question is well defined
Draw your DAG
Perform a target trial emulation

Use the correct estimators as parameters in your health-
economic model

20



Questions? Contact:

€) @uweSiebert9 © uwe.siebert@umit-tirol.at

in,

uwe-siebert9 \Web: www.htads.org
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Causal effects and causal estimators

Arthur Chatton
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To gain a general understanding of causal inference

Counterfactual framework
What is a causal effect
Propensity score
G-computation

Doubly robust estimator

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow,



Single arm trials

s s PR oeewwoggn

Patients Experiement group

RCT %%l% Inclusipn and %%% Randomize
exclusion

Patients Screened patients

Grouping by
O S Inclusion and exposure
exclusion factor

Populations Cohort

(e

External control

Matching
Select

Experiement group

e —

Control group

Experiement group

— i —
Control group

L W —

— e —

Exposed group

Adapted from Wang et al. (2025)

Analyze

Follow-up
VISlt

Analyze

Follow-up
visit
Analyze

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow,
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Counterfactual framework

Causal inference: Quantifying the effect of the treatment A on the outcome Y
But what does the "effect” mean?

= Estimand

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow,



Counterfactual framework

Each individual had two potential outcomes (assuming a binary A):

Y2=1: Outcome observed in a hypothetical world where all are treated (A=1)

Y2=0: Qutcome observed in a hypothetical world where all are untreated
(A=0)

Only one is actually observed

A Y Y YU
0 1 2?2 1
1 1 1 ?

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow,



Counterfactual framework

Each individual had two potential outcomes (assuming a binary A):

Y2=1: Outcome observed in a hypothetical world where all are treated (A=1)

Y2=0: Qutcome observed in a hypothetical world where all are untreated
(A=0)

Only one is actually observed

A Y Y YU
0 1 2?2 1
1 1 1 ?

Estimand = (Causal effect = contrast between Y' and Y°) in a defined population

e Examples: E(Y*™) —E(Y*™°) or E(Y* A =1)/E(Y*°|A =1)

ATE ATT

— Causal effect is based on unmeasurable variables

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow,



Counterfactual framework

Causal effect = concept, e.g., E(Y') — E(Y?)

£
Association = Statistical measure, e.g., E(Y|A =1] — E(Y|A = 0)

Assumptions are needed to map these two quantities = Identifiability

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow,



Counterfactual framework

Causal effect = concept, e.g., E(Y') — E(Y?)

£
Association = Statistical measure, e.g., E(Y|A =1] — E(Y|A = 0)

Assumptions are needed to map these two quantities = Identifiability

Consistency: A; =a = Y; = Y7
Exchangeability: Y2 1l A|X
Positivity: P(A =a|X =x) > 8 > 0,Vxsuchas P(X =x) >0

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow,



Counterfactual framework Some specificities of SAT

e |ITT: main estimand in RCT
e SATs usually target the Per Protocol effect

= contrast between E(Y2=1.¢=1) and E(Y2=0.c=T) )
e I|dentifiability assumptions must also apply for the censoring history C

e The external control group should be chosen to minimize potential
consistency violations

e Residual confounding is likely = Adjusting on some X

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow,



Counterfactual framework Adjusting on X

e FDA (2019) and EMA (2015) recommend adjusting on a few X prognostics
of Y to increase the statistical power

e This targets the Conditional Average Treatment Effect:
E(Y'X = x) — E(Y°|X = x)
e Not really useful for non-collapsible measures, such as the OR/HR

e Causal estimators adjust on X and recover the ATE (RCT goal)

e Can be used in SAT to control residual confounding too

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow,



Causal estimators

Three “families” of causal estimators:

Propensity score (PS): Model A conditional on X to balance the arms
G-computation (or g-formula): Model Y conditional on A and X to predict Y@

Doubly robust estimators (DRE): Combine PS and g-computation to reduce
modelling assumptions

| will not speak about quasi-experimental approaches, such as |V, today.

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow,



Causal estimators Propensity score

Goal of PS: balance the treatment arms to mimic an RCT

Can be used in various ways:

e Stratification on the PS

e Added as the covariate in a model
e Matching on the PS

e Weighting on the PS

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow,



Causal estimators Propensity score

General recipes:
Model e(X) = P(A = 1|X) using for instance a logistic regression
Now for Matching:

Match treated and untreated individuals according to their e(X;)
Model E(Y|A) on the resulting matched sample

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow,



Causal estimators Propensity score

General recipes:
Model e(X) = P(A = 1|X) using for instance a logistic regression
Now for Matching:

Match treated and untreated individuals according to their e(X;)
Model E(Y|A) on the resulting matched sample

While for Weighting (i.e., inverse probability weighting):

Compute the individuals’ weight w as a function of e(X;)
Model E(Y|A) on the whole sample, but weighted by w

The coefficient of A will be the causal effect (the type of regression should
match the wanted contrast).
Use a sandwich estimator or bootstrap for the variance.

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow,



Causal estimators G-computation

Goal of g-computation: Simulate the counterfactual worlds

General recipe:

Model Q(A, X) = E(Y|A, C) using all individuals of the sample
Predict Y¢ = Q(a, X;), Va for each individuals

Average Y? over all individuals and contrast them to compute the estimand
of interest

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow,



Causal estimators Pro and cons

e Positivity is directly checkable with PS, but g-computation may be more
robust to random violations

e PS and g-computation require a correct specification of e(X) or Q(A, X),
resp.

e DREs relax this by requiring the correct specification of one but not
necessarily both

e They also allow the use of machine learning for fitting these models, further
limiting the risk of misspecification bias

e Several DREs exist; | will focus on the easiest one (IMHO)

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow,



Causal estimators Doubly robust standardisation

Goal of doubly robust standardization: use PS weighting to mimic RCT, then use
g-computation to remove residual confounding

General recipe:

Model e(X) = P(A = 1|X) using for instance a logistic regression
Compute the individuals’ weight w as a function of e(X;)

Model Q(A, X) = E(Y|A, X) using all individuals of the sample, but the
model is weighted by w

Predict Y¢ = Q(a, X;), Va for each individuals

Average Y? over all individuals and contrast them to compute the estimand
of interest

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow,



e Residual confounding in SAT can be controlled if measured

e Causal estimators are easily computable using standard statistical
software

e Quality of data is still crucial

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow,



e Residual confounding in SAT can be controlled if measured

e Causal estimators are easily computable using standard statistical
software

e Quality of data is still crucial

To go further:
= Chatton and Rohrer (2024)
Other readings:

e Review on matching schemes: Stuart (2010)

e Tutorials on DREs:

e Binary outcome: Luque-Fernandez et al. (2018)
e Time-to-event outcome: Talbot et al. (2025)

Arthur Chatton, Faculté de Médecine, Université Laval, CRM-StatLab-CANSSI postdoctoral fellow,
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What’s in an effect
measure?




Two effect measure descriptions

- What is the effect of dabigatran on gastrointestinal bleeding?

« What is the 2-year risk difference for gastrointestinal bleeding for Medicare
beneficiaries recently diagnosed with atrial fibrillation comparing initiating
and staying on treatment for atrial fibrillation with dabigatran (vs warfarin)?

* Which of these...

* |s a well-defined causal effect?
» Could fit in the title of a journal article?

4 Wake Forest University e seackile Game
School of Medicine of Atrium Health



What makes for a well-defined causal effect?

« Somewhat obviously...
 Treatment of interest: dabigatran
» Referent or comparator: warfarin
» Qutcome: mortality
* Intention-to-treat vs per-protocol: initiating and staying on treatment

* More subtly...
* The index date: recent diagnosis with atrial fibrillation
The target population(s): Medicare beneficiaries with atrial fibrillation
Scale of the effect: the risk difference
Length of follow-up: 2 years
Handling of competing events: allowed to occur (should be the default)

5 Wake Forest University e seackile Game
School of Medicine of Atrium Health



Deciding which effect to estimate

« Should always consider...
- Stakeholder opinions
 Potential for intractable confounding or selection bias
 Practical issues with data availability
* How they impact external validity (...hold that thought)

* Like almost everything in public health, this is a
balancing act

Wake Forest University e ereatEiie G
School of Medicine of Atrium Health




Defining
external
validity




Crude external validity

* The effect in the study population equals
the effect in the target population

* For the RD...
« E(Y?=|Study) - E(Y#0|Study) =
E(Y2=1|Target) - E(Y2=0|Target)
* Achieved via...
* Random sampling
* Homogeneity (if collapsible measure)

Wake Forest University e ereatEiie G
School of Medicine of Atrium Health



What is effect measure modification?

- Effect measure modification by a variable M occurs when the effect
measure of interest varies across levels of M

« Mathematically,
- E(Y*=1|[EMM=1) - E(Y®=0|EMM=1) # E(Y2=1|EMM=0) - E(Y*=°|EMM=0)

- Several different types of effect measure modification, all threatening
external validity / Q "

I\/I\ Me——1L M——L M L

! ! }

Y A———Y A

A———Y A

Y

* If M represents “population”, we lack crude external validity on either the
RD or RR scale in all of these scenarios

9 Wake Forest University e seackile Game
School of Medicine of Atrium Health



Conditional external validity

- Conditional on an adjustment set L, the effect measure from the study
population equals the effect measure in the target population

 For the RD:
« E(Ya=|Study,L=t) - E(Y2=0|Study,L=t) = E(Y®""|Target) - E(Y#|Target)
- Where L=t means that we have adjusted for L via:

* Weighting
« The g formula and outcome modeling
- Doubly robust approaches /' 2 \
M<+——L M L M L
I | I

A——Y A———>Y A——Y

10 Wake Forest University e seackile Game
School of Medicine of Atrium Health



Different elements of effect
measures and external validity




The outcome and follow-up duration

« Changing the outcome can directly impact external validity
* (for pretty obvious reasons)

- Outcomes where the treatment truly has no effect will always have crude
external validity

* This can apply to short-term outcomes for treatments with long latency
periods, as well

Study participation <«—  Country of residence Study participation <«—— Country of residence
Dabigatran vs warfarin Airplane accidents Dabigatran vs warfarin » G.| Bleed
o Wake Forest University The academic core

School of Medicine of Atrium Health



Index date

- Some treatments vary in safety/effectiveness over time
Thrombolytics for stroke prevention

Different types of rehabilitation

Treatments for Parkinson’s

Everything in oncology

 This often manifests as effect measure modification, especially in the case
of critical windows, and may need to be accounted for

Study participation <« Colon cancer stage
FOLFOX vs 5-FU » Mortality
Wake Forest University The academic core

9 School of Medicine of Atrium Health



The treatment and comparator

» Variations between study and target population interventions can threaten
external validity due to issues with consistency

« Consider...

 Financial incentives (or support) in the study that aren’t present in the target
- Differences in surveillance or lifestyle interventions
+ Actual differences between formulations (e.g., extended release)

» Can sometimes be fixed if an intermediate variable has been measured

Study participation Frequency of physician visits

l

Aspirin » Cardiovascular mortality

14 Wake Forest University e seackile Game
School of Medicine of Atrium Health



Handling of competing events

Option 1: Censoring Option 2: Allowing to occur

« Censoring individuals who experience - Allowing competing events to occur
competing events estimates an effect estimates a much simpler to describe
where you can prevent all those events causal effect

* When populations differ in their risk of the  * You may also need to address differences
competing event, this makes achieving in the risk of the competing event between
external validity easier populations, however

Study participation <+— Age  « . .and it complicates analyses

/ Surgical mortality \

Prostate cancer screening —— Prostate cancer mortality

Wake Forest University The academic core

" School of Medicine of Atrium Health



Intention-to-treat vs per-protocol follow-up

* Intention-to-treat effects face external validity issues if adherence and
predictors of adherence differ between populations
» This can create additional effect measure modification

 Per-protocol effects condition away this source of potential effect
measure modification by default

» But will need to address potential informative censoring resulting from deviations from
the protocol

Study participation « Healthy lifestyle
\‘ Adherence to statin therapy /

Statin use » All-cause mortality

16 Wake Forest University e ereatEiie G
School of Medicine of Atrium Health



Scale of the effect

* The scale of the effect has implications for adjustment sets

 The risk difference (RD) is a weighted average of each RD in
the population, with weights based on the prevalence
* Requires variables that directly interact with treatment on the difference
scale, rather than overall/marginal EMMs

* The risk ratio (RR) is a weighted average of the RRs, with
weights based on the prevalence and the risk of the outcome

* Requires variables that interact on the ratio scale and variables that don’ t
interact but are associated with the outcome

« The odds ratio (OR) isn’t a weighted average of anything
* Requires all variables associated with the outcome

. Wake Forest University
School of Medicine

The academic core
of Atrium Health
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External validity is complex

- Every decision you make about the effect measure you are estimating has
implications for its external validity

- Conditions to achieve external validity are as complicated, if not more
complicated, than conditions to achieve internal validity

« Sometimes, the safe choice for internal validity is not the safe choice for

external validity
* Placebo groups?
* Intention-to-treat analyses?

+ Thinking through all of these elements is a major part of generalizing or
transporting effect estimates

Wake Forest University The academic core

19 School of Medicine of Atrium Health



A closing question

* Which do you prioritize when designing your studies and
choosing an effect measure?

A. Internal validity
B. External validity

C. Overall validity

20 School of Medicine of Atrium Health

Wake Forest University The academic core



Questions

My emails: miwebste@wakehealth.edu, michael.webster-clark@ mcgill.ca, mawc@]live.unc.edu

Wake Forest University T eeerEils Gare
School of Medicine of Atrium Hezlth


mailto:miwebste@wakehealth.edu
mailto:michael.webster-clark@mcgill.ca
mailto:mawc@live.unc.edu

Adjustment for external vs internal validity

Internal validity External validity

* Weight the exposed and unexposedtoa - Weight the study population to resemble
common population (ATE, ATT, ATU) the target population of interest based
based on predicted treatment probability = | =on predicted “sampling” probability

* Use outcome models built in the exposed -+ Use outcome models built in the study
and unexposed to predict outcomes in a\.g«, population to predict outcomes in the

common population 'v'|‘ target population of interest
« Combine treatment and outcome + Combine sampling and outcome models
models to obtain doubly-robust estimates . to obtain doubly-robust estimates

e

Wake Forest University
School of Medicine

The academic core
of Atrium Health
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What Causal Inference Teaches us about the
Limitations of Indirect Treatment Comparisons
for Health Technology Assessment

ISPOR 2025, Montreal

Harlan Campbell, PhD

Department of Statistics, University of British Columbia, and Precision AQ
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A question

When conducting ITCs for HTA, why is an understanding of
causal inference most important?

A. ...to select the best estimator for the analysis.

B. ...to ensure we are adjusting for all the necessary variables
for unbiased estimation.

C. ...to ensure we are targeting the correct estimand of interest.



« Example 1: An unanchored ITC

» How do we adjust for confounders when IPD is unavailable?
 MAIC or STC?
» or augmented MAIC for doubly-robust estimation?

* Example 2: An anchored ITC
 Different effect measure scales require adjusting for different variables.

» Non-collapsible effect measures depend on the distribution of purely prognostic factors in the study
population.

 But the bias from ignoring purely prognostic factors will typically be small.

* Example 3: A three study NMA

» What is the causal estimand of interest?
» Marginal or population-average conditional?



EXAMPLE 1

Unanchored Indirect Treatment Comparison
without full IPD

target population is ATC

Single Arm Trial 2
IPD not available
(only aggregate-level data)

Single Arm Trial 1
IPD

Unanchored ITC treated
with IPD only available for treated

Observational Study
with IPD available for both arms

treated control



Doubly robust augmented weighting estimators for the analysis of

externally controlled single-arm trials and unanchored indirect

treatment comparisons

Harlan Campbell'? | Antonio Remiro-Azécar

!Evidence Synthesis and Decision Modeling,
Precision AQ, British Columbia, Canada

2Departmem of Statistics, University of
British Columbia, British Columbia,
Canada

3Methods and Outreach, Novo Nordisk
Pharma, Madrid, Spain

3

Externally controlled single-arm trials are critical to assess treatment efficacy across
therapeutic indications for which randomized controlled trials are not feasible. A
closely-related research design, the unanchored indirect treatment comparison, is
often required for disconnected treatment networks in health technology assess-
ment. We present a unified causal inference framework for both research designs.
We develop a novel estimator that augments a popular weighting approach based
on entropy balancing — matching-adjusted indirect comparison (MAIC) — by fitting
a model for the conditional outcome expectation. The predictions of the outcome
model are combined with the entropy balancing MAIC weights. While the standard
MAIC estimator is singly robust where the outcome model is non-linear, our aug-
mented MAIC approach is doubly robust, providing increased robustness against
model misspecification. This is demonstrated in a simulation study with binary out-
comes and a logistic outcome model, where the augmented estimator demonstrates
its doubly robust property, while exhibiting higher precision than all non-augmented
weighting estimators and near-identical precision to G-computation. We describe
the extension of our estimator to the setting with unavailable individual participant
data for the external control, illustrating it through an applied example. Our findings
reinforce the understanding that entropy balancing-based approaches should be aug-
mented to improve protection against bias and guarantee double robustness.

EXAMPLE 1

For the ATC, “balancing” approaches to weighting
(e.g., MAIC or entropy balancing), can enhance
performance relative to standard “modeling”
approaches (i.e., propensity score weighting).

The augmented MAIC is doubly robust and has
higher precision than non-augmented weighting
estimators when the outcome model is correctly
specified.

The augmented MAIC achieves near-identical
precision to G-computation/STC, which can have

substantial bias where the outcome model is
misspecified.

Campbell, H, Remiro-Azdcar, A., (2025). Doubly robust augmented weighting estimators for the analysis of externally controlled single-arm

trials and unanchored indirect treatment comparisons. arXiv preprint, arXiv:2505.00113



Different causal estimators require different EXAMPLE 1

assumptions

Unanchored Indirect Treatment Comparison

Study 1 Study 2

N =500 N =300
IPD IPD not available

w

The target estimand is the effect of Avs B in the Study 2
population (i.e., the ATC) on the marginal log-odds ratio
scale.

Four baseline covariates have been identified as
potential confounders:

* age

* sex

e ECOG

* smoking status



Different causal estimators require different

assumptions

Unanchored Indirect Treatment Comparison

Study 1 Study 2
N =500 N =300
IPD IPD not available

@ @

The target estimand is the effect of Avs B in the Study 2
population (i.e., the ATC) on the marginal log-odds ratio
scale.

Four baseline covariates have been identified as
potential confounders:

* age
* sex
e ECOG

* smoking status

Treatment

(Study Participation)

EXAMPLE 1

Objective
Response

(proportion of smokers)

Covariate Intervention SAT | External control
(n, = 500) (ny = 300)
Age in years 59.85;9.01 50.06; 3.24
(mean; standard deviation)
Sex 0.38 0.49
(proportion male)
ECOG 041 0.35
(proportion ECOG performance status of 1)
Smoking status 0.32 0.19




EXAMPLE 1
Three different estimators

* Matching-adjusted indirect comparison (MAIC)
* Weighting method similar to propensity score estimators

 Assumption: Requires correct specification of the implied trial
assignment model

* Simulated treatment comparison (STC)
 Model-based standardization method similar to G-computation
» Assumption: Requires correct specification of the outcome model

* Doubly robust augmented MAIC estimator (DR)

» Assumption: Requires either the propensity score model or the
outcome model be correct, but not necessarily both



EXAMPLE 1
Results

MAIC vs STC vs DR

The intervention improves objective

| J .
response versus the control. ' ¢ | Naive
DR point estimate is not meaningfully

. . } ® { MAIC
different than the MAIC or STC point
estimates.

| o |
DR approach has slightly increased ' ' SIC
uncertainty than STC.
. . . I ® i DR
This loss of precision seems a relatively
minor price to pay for robustness to
0.9 1.2 1.5 1.8

model m |sspeC|f|cat|on . log—odds ratio of objective response



EXAMPLE 2

Anchored Indirect Treatment Comparison

Study 1 Study 2
N =400 N =6000

N
C (A) B

Ratio of non-smokers Ratio of non-smokers
to smokersis 1:1 to smokersis 5:1
IPD is available IPD is not available

Two randomised trials with three treatments A, B, C, in populations where the prevalence of
smoking varies substantially.

Riley, R. D., Dias, S., Donegan, S., Tierney, J. F., Stewart, L. A., Efthimiou, O., & Phillippo, D. M. (2023). Using individual participant data to improve network meta-
analysis projects. BMJ evidence-based medicine, 28(3), 197-203.



EXAMPLE 2
Transportability for Indirect Treatment Comparisons

Anchored Indirect Treatment Comparison

Study 1 Study 2

N =400 N =6000
ORENoLLNG
\_/

e Qutcome of interest: the number of individuals who
respond to treatment.

* |PD is available for Study 1 but not for Study 2.

* Smoking is prognostic but not effect-modifying (i.e.,
treatment is same for smokers and non-smokers).



EXAMPLE 2
Transportability for Indirect Treatment Comparisons

Anchored Indirect Treatment Comparison

Objective: Estimate the relative treatment
Study 1 Study 2 effect of C vs B in the Study 2 population

N =400 N =6000
G020
U This requires transporting the effect of

treatment Cin the Study 1 population to
the Study 2 population.

e Qutcome of interest: the number of individuals who
respond to treatment. L> We need to think about

external validity!

* |PD is available for Study 1 but not for Study 2.

* Smoking is prognostic but not effect-modifying (i.e.,
treatment is same for smokers and non-smokers).



Study 1

Ratio of non-smokers to smokersis 1:1

Binary outcome

Non-smokers

EXAMPLE 2

Smokers @

(Response) Overall
Response Response Response Response Response Response
Yes No Yes No Yes No
Treatment C 90 10 50 50 140 60
Treatment A 50 50 10 90 60 140
Risk difference: C/A 0.9-0.5=0.4 0.5-0.1=0.4 0.7-0.3=0.4
, , 90/10 50/50 140/60
Marginal odds ratio: C/A =9 = =
50/50 10/90 60/140




Study 1

Ratio of non-smokers to smokersis 1:1

Binary outcome

Non-smokers

EXAMPLE 2

Smokers @

(Response) Overall
Response Response Response Response Response Response
Yes No Yes No Yes No
Treatment C 90 10 50 50 140 60
Treatment A 50 50 10 90 60 140
Risk difference: C/A 0.9-0.5=0.4 0.5-0.1=0.4 0.7-0.3=0.4
, , 90/10 50/50 140/60
Marginal odds ratio: C/A =9 = =
50/50 10/90 60/140
9=9 54 - Non-collapsibility!




Study 2

Ratio of non-smokers to smokers is 5:1

Non-smokers

Binary outcome

EXAMPLE 2

r
Smokers g Overall
(Response)
Response Response Response Response Response Response
Yes No Yes No Yes No
Treatment B 2250 250 250 250 2500 500
Treatment A 1250 1250 50 450 1300 1700
Risk difference: B/A 0.9-0.5=0.4 0.5-0.1=0.4 0.83-0.43=0.4
250/250 2500/500
Marginal odds ratio: B/A M = ; = —/ =
1250/1250 50/450 1300/1700




Study 2

Ratio of non-smokers to smokers is 5:1

Non-smokers

Binary outcome

EXAMPLE 2

r
Smokers g Overall
(Response)
Response Response Response Response Response Response
Yes No Yes No Yes No
Treatment B 2500 500
5000 1000
Treatment A 1300 1700

Risk difference: B/A

0.83-0.43=0.4

Marginal odds ratio: B/A

2500/500
1300/1700




EXAMPLE 2
Marginal Risk Difference of A vs. B in Study 2 population

Estimated Marginal Risk Difference:
DNS=2 _ pnsS=2 DTS =2
RDzs“ = RDjy“ — RDyg

Ignoring data on

“Unadjusted” model / smoking status

RD372 =04 — 0.4 = 0.0

Conclusion: There is no difference between A and B in the Study 2 population



EXAMPLE 2
Marginal Odds Ratio of Avs. B in Study 2 population

Estimated Marginal Odds Ratio:

log(ORSZ?) = log(ORSZ2) — log(ORS3?)

Ignoring data on

“Unadjusted” estimator smoking status

OR3:% = exp(log(5.4) —log(6.5)) = 0.83

Conclusion: Treatment C is worse than treatment B in the Study 2 population

Population-adjusted estimators

MAIC — oo Using data on
OR%c” = exp(log(6.5) —log(6.5)) = 1 «—  smoking status

Assumption: Requires correct specification of the implied propensity score model
ADS=2 _ —
OR%~ = exp(log(6.5) —log(6.5)) = 1

Assumption: Requires correct specification of the outcome model

Conclusion: There is no difference between C and B in the Study 2 population



EXAMPLE 2
Marginal odds ratio vs conditional odds ratio

The marginal odds ratio depends on the distribution of prognostic factors in the study population!

Marginal Odds Ratio

109 Contrary to current recommendations?
97 * NICE DSU TSD 18: “To avoid loss of precision
due to over-matching, no prognostic variables
8 7 which are not also effect modifiers should be
7.3 -0 Study?2 ) adjusted for, as variables which are purely
N N / prognostic do not affect the estimated relative
. 6.5 < i treatment effect.”’
Bias = \ Study 1 /
0.83 —
54 — t=ne-—* * Vo (2023): purely prognostic variables can be
5 — “safely excluded.”?
| | | | | | |
1:10 15 1:2 1:1 2:1 51 101

Ratio of non-smokers to smokers in the study

1 - Phillippo DM, Ades AE, Dias S, Palmer S, Abrams KR, Welton KJ. NICE DSU Technical Support Document 18: Methods for population-adjusted indirect comparisons in
submissions to NICE. 2016.
2 - Vo TT. A cautionary note on the use of G-computation in population adjustment. Research Synthesis Methods. 2023; doi:10.1002/jrsm.1621



What if we ighore purely prognostic variables?

Marginal Odds Ratio
9-

88 o, 88 %
85 Te— 8§ —e— 85
8 -
Predictive power of smoking
as a fraction of main trt effect
-~ 0.3
7- -o- 0.5
-~ 0.8
1
Study 2
6 -
5.7 5.7
55
Study 1
1:10 1:5 1:2 1:1 2:1 51 10:1

Ratio of non-smokers to smokers

EXAMPLE 2



EXAMPLE 2
What if we ighore purely prognostic variables?

Marginal Odds Ratio

9-
8.8 e | 1 e 8.8
8.5 ' 85 : 8.5
8.3 8.3
The bias will only be small
8 18 e ] 78 | e 78 unless:
Predictive power of smoking
as a fraction of main trt effect .
* The ratio of non-smokers to
0:3 smokers is very different in the
7. - 05 two studies
- 0.8
1 * The predictive effect of
smoking is strong
Study 2
6-
5.7 5.7
55
Study 1
1:10 1:5 1:2 14 2:1 5:1 10:1

Ratio of non-smokers to smokers



EXAMPLE 2

Marginal odds ratio vs conditional odds ratio

The marginal odds ratio depends on the distribution of prognostic factors in the study population!

Marginal odds ratio
10

Ratio of non-smokers to smokers in the study

Population-adjusted conditional odds ratio

10
Study 2 Study 1

9 | 0=—mmo= ° - = ° . -

| | | | | | |
110 15 1:2 1:1 2:1 5:1 10:1

Ratio of non-smokers to smokers in the study



EXAMPLE 3

Network Meta-Analysis

Study 1 Study 2
N =2000 N = 2000
O DG
Study 3
N = 2000

Ratio of non-smokers to smokers is 3:1 in all three studies

Three trials comparing four treatments A, B, C, and D.



EXAMPLE 3

Marginal vs conditional effects

Network Meta-Analysis

N =2000 N = 2000
O=05=—0

N =2000

e Qutcome of interest: the number of individuals who
experience disease progression.

* Smoking status is prognostic and effect-modifying.



EXAMPLE 3

Marginal vs conditional effects

Network Meta-Analysis

N =2000 Objective: Rank the treatments according to

N =2000
@ /A\ @ their effectiveness
N =2000
Best treatment for who?

L We need to think about the

causal question of interest.

e Qutcome of interest: the number of individuals who
experience disease progression.

* Smoking status is prognostic and effect-modifying.



EXAMPLE 3

Effect modification and non-collapsibility leads to
conflicting treatment decisions: a review of marginal and
conditional estimands and recommendations for
decision-making

David M. Phillippo!
Population Health Sciences, Bristol Medical School, University of Bristol, UK

Antonio Remiro-Azdécar
Methods and Outreach, Novo Nordisk Pharma, Madrid, Spain

Anna Heath

Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Canada
Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
Department of Statistical Science, University College London, London, United Kingdom

Gianluca Baio
Department of Statistical Science, University College London, London, United Kingdom

Sofia Dias
Centre for Reviews and Dissemination, University of York, York, United Kingdom

A.E. Ades
Population Health Sciences, Bristol Medical School, University of Bristol, UK

Nicky J. Welton
Population Health Sciences, Bristol Medical School, University of Bristol, UK

Phillippo, D. M., Remiro-Azécar, A., Heath, A., Baio, G., Dias, S., Ades, A. E., & Welton, N. J. (2024). Effect modification and non-collapsibility leads to conflicting
treatment decisions: a review of marginal and conditional estimands and recommendations for decision-making. arXiv preprint arXiv:2410.11438.



Study 1

Non-smokers

EXAMPLE 3

Treat 1 Smokers Overall
reatmen (N=1500) (N=500) (N=2000)
Progression Progression Progression Progression Progression Progression
Yes No Yes No Yes No
Study 1 A 202 548 156 94 358 642
Study 1 89 661 42 208 131 869
Marsinal odds ratio: B/A 89/661 037 42/208 131/869 0.27
arginat o S ratio: — - - = VU = - =
g 202/548 156/94 358/642

Population-average
conditional odds ratio: B/A

4500
exp(M log(0.37) +

1500
—Ilo
6000

(0.12)) = 0.28




Based on the marginal odds ratios, treatment B is the best

Treatment

Non-smokers

Smokers

EXAMPLE 3

Overall

(N=4500) (N=1500) (N=6000)
Progression Progression Progression Progression Progression Progression
Yes No Yes No Yes No
Study 1 A 202 548 156 94 358 642
Study 1 89 661 42 208 131 869
: - 89/661 42/208 131/869 _
Marginal odds ratio: B/A 202/548 0.37 156,94 0.12 358/642 =0.27
Study 2 202 548 156 94 358 642
Study 2 13 737 144 106 157 843
. . 13/737 144/106 157/843
M Lodd : C/A = = =T _.
arginal odds ratio 202/548 0.05 156/94 0.82 358/642 0.33
Study 3 A 202 548 156 94 358 642
Study 3 D 137 613 6 244 143 857
, _ 137/613 6/244 143/857
M Lodd : D/A - - = 0.
arginal odds ratio 202/548 0.61 156/94 0.01 358/642 0.30




Based on the conditional odds ratios, treatment B is the worst EXAMPLE 3

Non-smokers Smokers Overall
Treatment
(N=4500) (N=1500) (N=6000)
Progression Progression Progression Progression Progression Progression
Yes No Yes No Yes No
Study 1 A 202 548 156 94 358 642
Study 1 B 89 661 42 208 131 869
Marginal odds ratio: B/A 89/661 = 0.37 42/208 =0.12 131/869 =0.27
argina’ odds ratio: 202/548 156/94 358/642
. . 4500 1500
Pop-avg conditional odds ratio: B/A exp(m log(0.37) t =5 log(0.12)) = 0.28
Study 2 A 202 548 156 94 358 642
Study 2 C 13 737 144 106 157 843
Marginal odds ratio: C/A 13/737 = 0.05 144/106 =0.82 157_/843 =0.33
& ’ 202/548 156/94 358/642
- . 4500 1500
Pop-avg conditional odds ratio: C/A exp(m log(0.05) =000 log(0.82))=0.10
Study 3 A 202 548 156 94 358 642
Study 3 D 137 613 6 244 143 857
. . 137/613 6/244 143/857
Marginal odds ratio: D/A = = = 0.30
202/548 156/94 358/642

Pop-avg conditional odds ratio: D/A

exp(%g log(0.61) +

1500 B

Rankings

1. Treatment B
2. Treatment D
3. Treatment C

1. Treatment C
2. Treatment D
3. Treatment B



Marginal and conditional answer two different EXAMPLE 3
questions

* The marginal effect results in a decision that minimizes the number of events overall.

* The population average conditional effect results in a decision that is optimal for the
greatest number of individuals.

* When there is an effect modifier, marginal and conditional effects can lead to conflicting
treatment rankings.

Also:

. C%nditional effects can be transported to a different target population- not so easy with marginal
effects.

* Estimating conditional effects typically requires IPD or additional assumptions.

* MAIC and STC estimators can only obtain marginal effect estimates for the target population defined by
the study for which IPD is not available.

* ML-NMR estimators can obtain conditional effects but require an additional “shared effect-modifier”
assumption.



Recent perspectives

€¢ .. . .

For decision making, the marginal treatment
effect represents the effect of moving everyone
within the target population from treatment with

midostaurin to treatment with quizartinib.”

“ . .
Population-average conditional treatment
effects are specific to a target population with a
given distribution of treatment-effect modifier
characteristics and are interpreted as the average
of the individual-level treatment effects in the
population, i.e. the average effect of moving each
individual within the target population from
treatment with midostaurin to treatment with

quizartinib.”

Nevitt, S. J., Phillippo, D. M., Hodgson, R., Welton, N. J., & Dias, S. (2025). Application of Multi-level Network Meta-Regression in the NICE Technology Appraisal of Quizartinib

PharmacoEconomics
https://dol.org/10.1007/540273-024-01460-1

EXAMPLE 3

COMMENTARY

Application of Multi-level Network Meta-Regression in the NICE
Technology Appraisal of Quizartinib for Induction, Consolidation

and Maintenance Treatment of Newly Diagnosed FLT3-ITD-Positive
Acute Myeloid Leukaemia: An External Assessment Group Perspective

Sarah J. Nevitt' © . David M. Phillippo? - Robert Hodgson' - Nicky J. Welton? . Sofia Dias' ©

Accepted: 21 November 2024
©The Authorfs) 2024

1 Introduction

Matching-adj d indirect parisons (MAICs) [1] are
increasingly popular within National Institute for Health
and Care Excellence (NICE) Single Technology Appraisals
(STAs) as a method to adjust for cross-study differences in
patient characteristics, which are treatment-effect modifiers
[2, 3]. Matching-adjusted indirect comparisons are applica-
ble only in a two-study indirect treatment comparison (ITC)
scenario where individual participant data (IPD) are avail-
able from a study comparing A versus

duplication positive (FLT3-ITD+) acute myeloid leukacmia
(AML) [TA1013] [7].

2 Quizartinib for Induction, Consolidation
and Maintenance Treatment of Newly
Diagnosed FLT3-ITD+ AML

NICE invited Daiichi Sankyo UK to submit evidence for the
clinical and cost effectiveness of quizartinib (Vanflyta®) for

C and aggregate data (AD) from a second study compar-
ing treatment B versus treatment C, to obtain the indirect
comparison of A versus B. An inherent limitation is that
MAICs provide comparative effect estimates that are appli-
cable only to the population of the AD study and cannot be
transposed to different populations [4]. Multi-level network

mata canvassian AAAT ATMD\ avancnmas thasa Laitatines

the nt of newly diag d FLT3-ITD+ AML. The
NICE scope outlined two I to be idered as
part of the decision probl dard ch herapy (SC)

and midostaurin plus SC. The midostaurin regimen repre-
sents the current standard of care in the National Health
Service (NHS), so was the main comparator. Quizartinib
clinical effectiveness evidence was based primarily on
MG ANTI Bleos 101w whaoa TTT Jdakla hlad candasioad

for Induction, Consolidation and Maintenance Treatment of Newly Diagnosed FLT3-ITD-Positive Acute Myeloid Leukaemia: An External Assessment Group

Perspective. PharmacoEconomics, 43(3), 243-247.



EXAMPLE 3

Recent perspectives

Received: 2 August 2022 | Revised: 18 August 2022 | Accepted: 18 August 2022

DOI: 10.1002/sim.9566

Statistics
COMMENTARY WILEY

“Senn argues that “we usually treat individuals
not population [... but] reimbursement decisions in
HTA are typically made on populations not single

pa tients. ” Antonio Remiro-Azécar

Some considerations on target estimands for health
technology assessment

Medical Affairs Statistics, Bayer plc, Reading, UK

Correspondence
¢ . . . Antonio Remiro-Azécar, Medical Affairs Statistics, Bayer plc, 400 South Oak Way, Reading RG2 6AD, UK.
The target population of interest is not e
necessari ly b roa d . Oft en ’ It IS h I g h ly se l-e Cte d an d First and foremost, I would like to thank an anonymous Associate Editor and Prof. Nigel Stallard for arranging a fascinat-

ing discussion around my article, “Target estimands for population-adjusted indirect comparisons.”! This is based on a
prior exchange with Phillippo et al.>* I extend my gratitude to Russek-Cohen,’ Schiel,” Senn,” Spieker,* and Van Lancker

takes into account specific patient characteristics.

i i etal,’ for their additional contributions.
F orins t ance ’ t h e fl na l SCO p e Of a h ea l't h This rejoinder discusses the potential development of an estimands framework in the context of evidence synthesis and
te C h no lo gy a p p ra |S a l fo ra b emac | C l| b (TA8 1 O) s health technology assessment (HTA). I consider the following base-case scenario. An evidence synthesis (eg, an indirect
. . . treatment comparison or a network meta-analysis) is required for HTA. The evidence synthesis combines the results of
recen t l_y p u b l| S h e d by t h e N a t IoNna l I n St |t u te fo r multiple randomized controlled trials (RCTs).'%!? Each RCT has been designed for regulatory approval in the premarket-
. ing authorization setting, and has target estimands of its own. There are exceptions to this scenario; regulatory decisions
H ea l.t h an d C are EXC e lle nce N d eSscCri b es t h e ta rget are not exclusively based on RCTs and HTA decisions are not exclusively based on evidence synthesis. Nevertheless, it is

population as ‘adults with hormone
receptor-positive, HER2-negative, node-positive
early breast cancer after definitive surgery of the
. . . )9
primary breast tumor at high-risk of recurrence.

Senn S. Conditions for success and margins of error: estimation in clinical trials. Stat Med. 2022.
Remiro-Azécar, A. (2022). Some considerations on target estimands for health technology assessment. Statistics in Medicine, 41(28), 5592.



What do we need to adjust for?

EXAMPLE 1 EXAMPLE 2 EXAMPLE 3

Unanchored ITC Anchored ITC Anchored NMA across

across different across different homogeneous
populations populations populations

Risk difference Prognostics and effect Effect modifiers Nothing
modifiers

Population-average Prognostics and effect Effect modifiers Effect modifiers
conditional odds ratio WagleleliilsI¢]

Marginal odds ratio Prognostics and effect Prognostics and Nothing
modifiers effect modifiers*

*Failure to adjust for purely prognostic factors will likely result in only minimal bias.



Thank you!




Study 1

Ratio of non-smokers to smokersis 1:1

Binary outcome

EXAMPLE 2

Non-smokers

Smokers @

(Response) Overall
Response Response Response Response Response Response
Yes No Yes No Yes No
Treatment A 90 10 50 50 140 60
Treatment C 50 50 10 90 60 140
Risk difference: A/C 0.9-0.5=04 0.5-0.1=0.4 0.7-0.3=0.4
, , 90/10 50/50 140/60
Marginal odds ratio: B/C =9 = =
50/50 10/90 60/140
. , 90/10 90/10
Conditional odds ratio: B/C =9 =9 0.5x94+0.5x9=9
50/50 50/50




EXAMPLE 2
Study 2

Ratio of non-smokers to smokers is 5:1

Non-smokers

Binary outcome

Smokers @

(Response) Overall
Response Response Response Response Response Response
Yes No Yes No Yes No
Treatment B 2250 250 250 250 2500 500
Treatment C 1250 1250 50 450 1300 1700
Risk difference: A/C 0.9-0.5=0.4 0.5-0.1=0.4 0.83-0.43=0.4
250/250 2500/500
Marginal odds ratio: B/C M = ; = —/ =
1250/1250 50/450 1300/1700
. , 90/10 90/10
Conditional odds ratio: B/C = = 0.5x94+0.5x9=9
50/50 50/50




EXAMPLE 3

Study 1

Non-smokers Smokers Overall
Treatment
(N=4500) (N=1500) (N=6000)
Progression Progression Progression Progression Progression Progression
Yes No Yes No Yes No
Study 1 A 202 548 156 94 358 642
Study 1 B 89 661 42 208 131 869
Marginal risk difference: B/A -0.151 -0.456 -0.227
Pop avg conditional risk 4500 1500 B
difference: B/A 000 (-0.151) + 2000 (-0.456) = -0.227
, , 89/661 42/208 131/869
Marginal odds ratio: B/A —— = 0.37 = — =0.27
202/548 156,/94 358/642
Pop avg conditional odds ratio: 4500 1500 B
B/A exp(6000 log(0.37) + 600010g(0.12)) =0.28




Treatment

Non-smokers
(N=4500)

Smokers
(N=1500)

Overall
(N=6000)

Progression Progression Progression Progression Progression Progression
Yes No Yes No Yes No
Study 1 A 202 548 156 94 358 642
Study 1 B 89 661 42 208 131 869
Risk difference: B/A -0.151 -0.456 -0.227
Marginal odds ratio: B/A 89/661 = 0.37 42/208 =0.12 131/869 =0.27
& ' 202/548 156/94 358/642
Conditional odds ratio: B/A exp 4500 log(O 37) + 15001 g(0.12))=0.28
Study 2 A 202 548 156 94 358 642
Study 2 C 13 737 144 106 157 843
Risk difference: C/A -0.252 -0.048 -0.201
Marginal odds ratio: C/A 0.05 0.82 0.33
Conditional odds ratio: C/A exp — log(O 05) +ﬂ)1 g(0.82))=0.10
Study 3 A 202 548 156 94 358 642
Study 3 D 137 613 6 244 143 857
Risk difference: D/A -0.087 -0.600 -0.215
Marginal odds ratio: D/A 0.61 0.01 0.30
Conditional odds ratio: D/A exp — log(O 61) +ﬂ)1 g(0.01))=0.24

Rankings

~\

W

. Treatment B

Treatment D

. Treatment C

. Treatment C

Treatment D

. Treatment B

. Treatment B

Treatment D

. Treatment C



