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When do hallucinations occur and how 
do they impact prognostic ML models? 
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HALLUCINATIONS IN 

GENERATIVE MODELING
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Generative Modeling
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training data model synthetic data
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Hallucinations in Text Generation
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What is the capital of Canada?

The capital of Canada is Ottawa. problem of faithfulness

problem of factuality

Ottawa is one of the largest cities in 

Canada. It is located in Ontario and 

has a population of about 1 million. 

Montreal is another large city.

training data 

The capital of Canada is Montreal. 



Electronic Health Information Laboratory, Children’s Hospital of Eastern Ontario Research Institute

Hallucinations in Tabular Synthetic Health Data
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• Problem of factuality: Hallucinated patients are synthetic patients that are 

non-existent (or implausible) in the reference population.
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What is the hallucination rate (HR) during tabular synthetic 

health data generation (SDG)? 
1

Does the magnitude of the HR in synthetic health data affect the 

performance of downstream prognostic ML models?
2
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METHODOLOGY
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Identification of Hallucinated Patients
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• Hallucinations are synthetic patients (i.e.,    ) that are non-existent in the 

population, meaning that they have a non-zero (i.e.,        ) distance from all 

population records (i.e.,    ).

• The hallucination rate (HR) is the proportion of hallucinated patients among 

all synthetic patients.

min ( , )s rd x x 
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Downstream Utility: Prognostic AI/ML Modeling

• Train-synthetic-test-real (TSTR) is when a prognostic AI/ML model is trained on the 

synthetic data and then tested on unseen real records.

• Train-real-test-real (TRTR) is when a prognostic AI/ML model is trained on the (real) 

training data and then tested on unseen real records.

training data

synthetic data

SDG

training

training

testing

holdout data

testing

AUROC (TRTR)

AUROC (TSTR)
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Study Set Up
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• 12 real world health datasets

– 6,354 population variants with varying complexity by changing the 

number and type of variables included

• 1 SDG model (“generator”): Sequential Trees (ST) 

– 1 trained SDG model per population variant

– 10 synthetic health datasets per trained SDG model

• 1 prognostic AI/ML model: light gradient boosting machine

– AUROC (TRTR)

– AUROCavg(TSTR)

• Mixed-effect models were used to estimate the fixed effect of HR on AI/ML 

model performance with the specific health dataset as random effect.
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RESULTS
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The Hallucination Rate in Synthetic Health 

Data
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• Mean HR was 88.5% (SD 20.7%) in SDG via ST.

• Odds for hallucinations were higher with increasing complexity in SDG via ST. 

The large majority of health datasets (90.1%) were highly complex.

1

Figure 1. Exemplar mixed-effect model with the health dataset as random effect and complexity as fixed effect and 

HR as outcome for the ST SDG model. 3 out of 12 health datasets are shown as examples.
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• AUROC (TRTR) – AUROC (TSTR) was 0.05 on average in SDG via ST.

• AUROC (TSTR) did not change with increasing HR in SDG via ST.

2

Figure 2. Exemplar mixed-effect model with the health dataset as random effect and HR as fixed effect and TSTR as 

outcome for the ST SDG model. 3 out of 12 health datasets are shown as examples. TRTR is indicated as dashed 

line.
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CONCLUSIONS
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What is the hallucination rate (HR) during tabular synthetic 

health data generation (SDG)? 
1

Hallucinated patients can make up 100% of the synthetic dataset 

if the health dataset is highly complex.

Does the magnitude of the HR in synthetic health data affect the 

performance of downstream prognostic ML models?
2

Hallucinated patients do not necessarily impact prognostic ML 

model performance.

Does   or        vary across different SDG or prognostic ML models?1 2
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Limitations
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• The results were from one SDG model, other SDG models may present with 

different HR and different impact on prognostic ML modeling.

• Most health care datasets were highly complex. Different complexity and 

correlational structures are very likely to impact the HR. 

• Definition of hallucinated patients that are based on distribution shifts or correlational 

structures can produce very different results. 

• The HR did not impact prognostic ML models but can still erode trust and may be a 

challenge for other downstream task (e.g. inference, propensity-score matching)
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Thank you for listening !

And special thanks to …

… Samer El Kababji

… Dan Liu

… Khaled El Emam

Lisa Pilgram, MD

Postdoctoral Fellow at the Electronic Health Information Laboratory (Khaled El Emam)

Scan this QR code to connect with me on LinkedIn
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