Advances in prompting techniques

ISPOR Montreal Sven Klijn

May 14th, 2025

Advances in prompting techniques in the past year Function calling

Shift from few-shot prompts to contextual examples

Reasoning models

Tool calling

Refinement prompts

Agentic approaches

Self-critique

Extended context windows

RAG

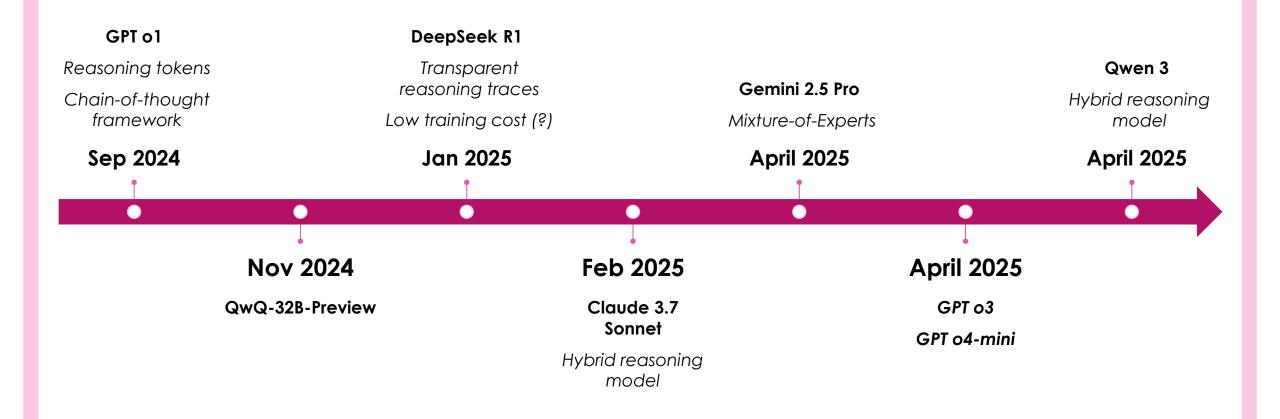
Fine-tuning

Clarification querying

Multimodal prompting

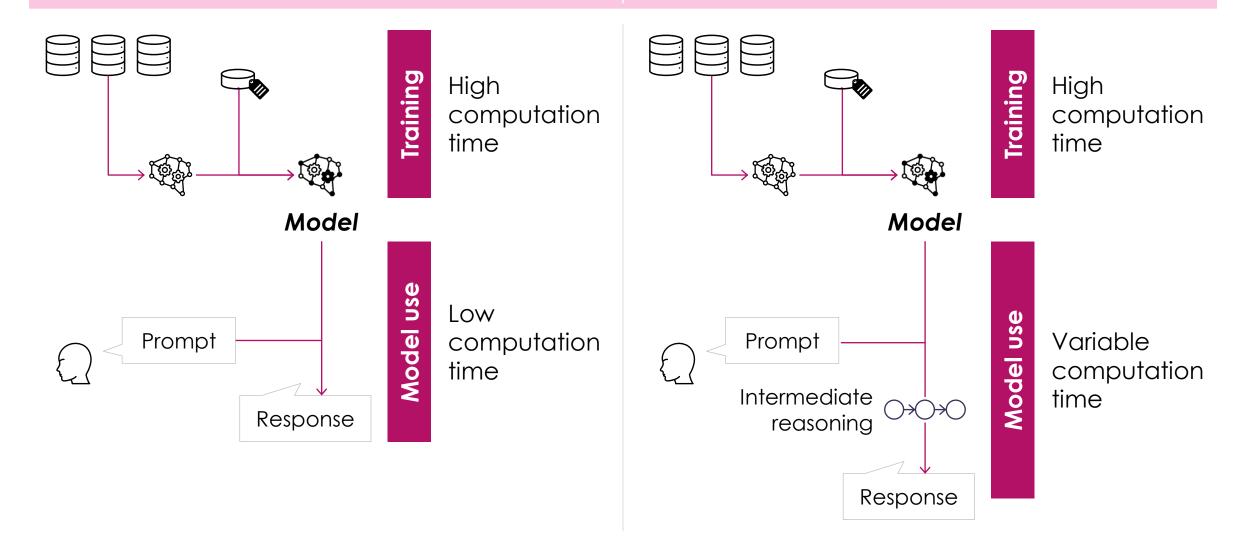
Structured output formatting

Reasoning models

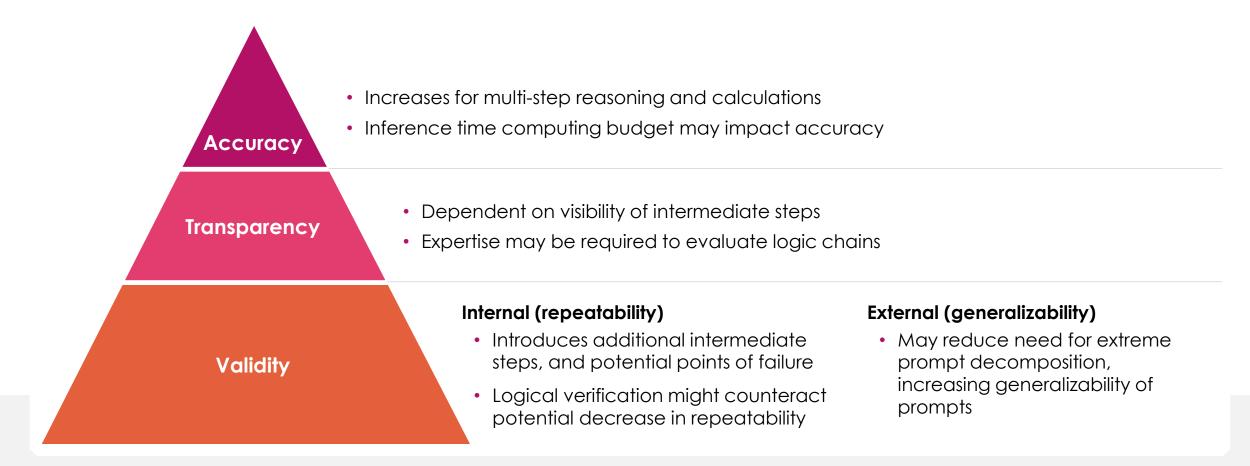


"Traditional" LLMs

Reasoning LLMs



Reasoning models: implications for HTA, HEOR and Access

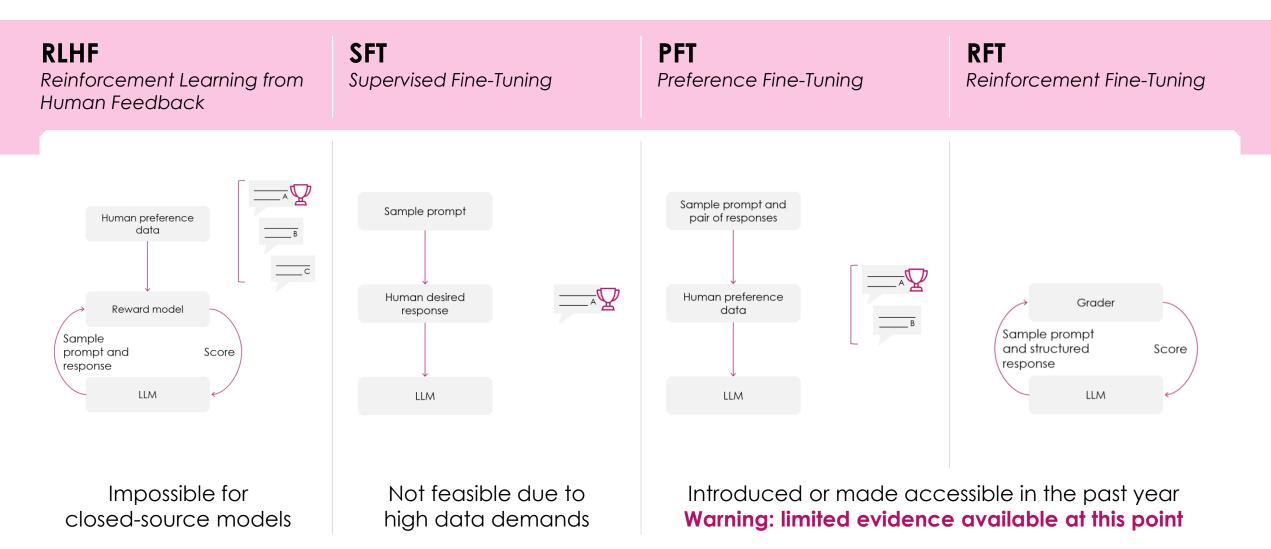


Application examples:

Multi-step calculations (e.g., price per dose),

Collation of individual assessments (e.g., overall score based on multiple components)

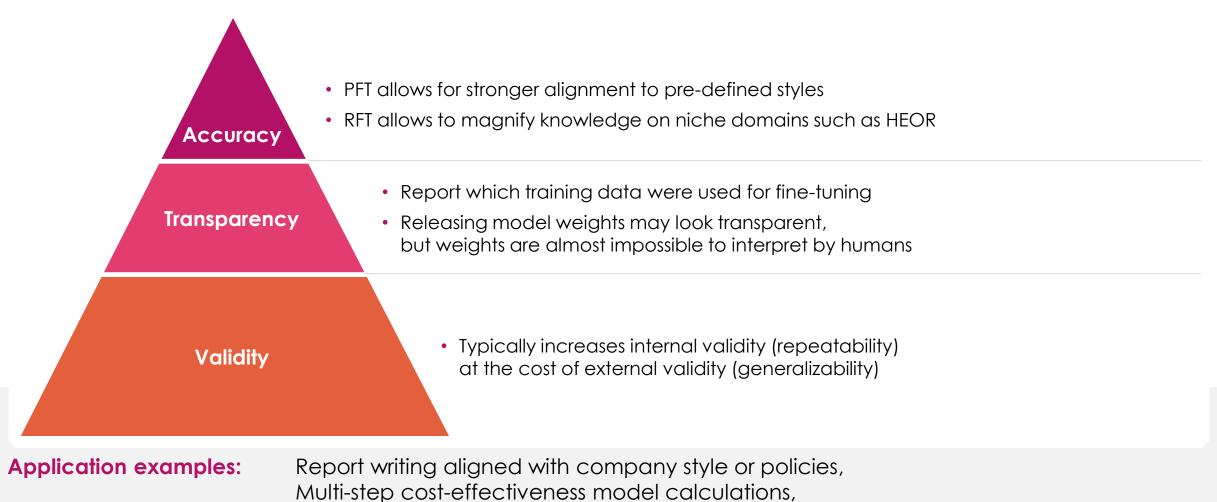
Fine-Tuning



Comparison of fine-tuning techniques

	RLHF	SFT	PFT	RFT
Objective	Align model with human preferences through reinforcement learning	Improve performance on specific tasks using labeled examples	Align model with human preferences based on human preference labels	Improve performance on specific tasks by reinforcing correct reasoning patterns
Training data format	Reward model fit to human-preference data	Input / output pairs	Input /preferred output / non-preferred output triplets	Input / answer pairs + grader
Amount of training data required	High	High	Moderate	Low / Moderate
Computational resources required	High Iterative reinforcement learning and reward model computation	Moderate Dependent on the size of the dataset	Moderate Less than RLHF but likely higher than SFT	Moderate / High Requires iterative training over the same data points
Use case	When human alignment is critical e.g., content moderation	Single true outcome e.g., custom code format	Subjective outcomes e.g., creative writing	Domains where tasks have objectively correct answers(e.g., HEOR)

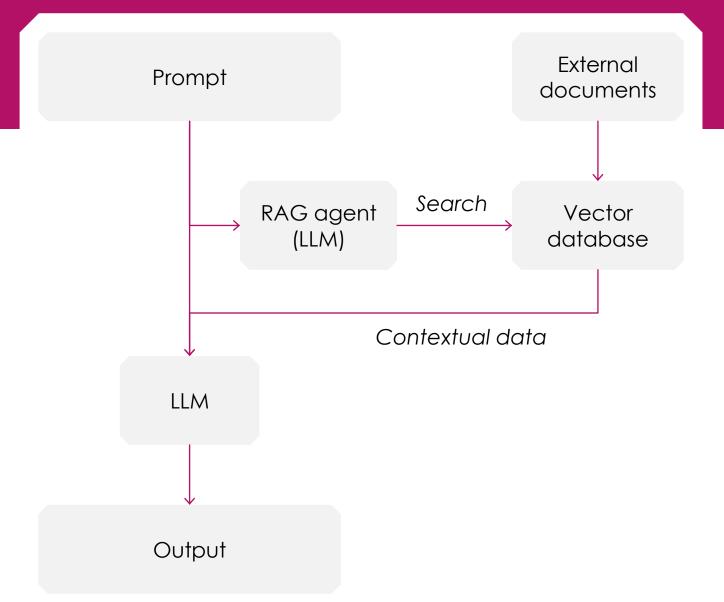
Fine-Tuning: implications for HTA, HEOR and Access



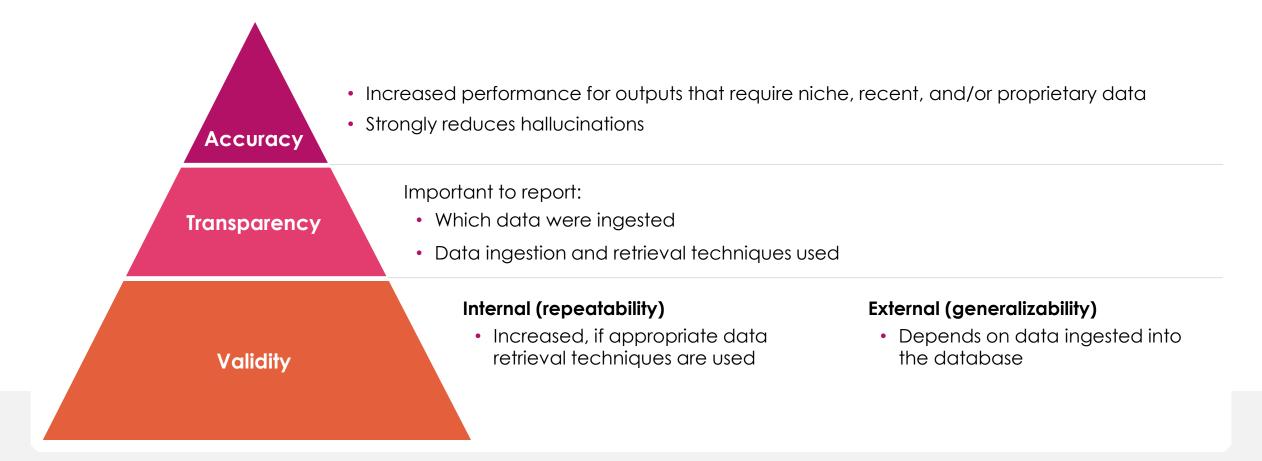
Distillation (train small LLMs to replicate performance of large LLMs, in specific domains)

Retrieval Augmented Generation (RAG)

- RAG provides LLMs with new information that was not included in the model's training data¹
- \equiv This is relevant for data that may be:
 - Proprietary
 - Very recent
 - Part of a niche domain
- Data ingestion and retrieval techniques are highly active fields of research



RAG: Implications for HTA, HEOR and Access



Application examples:

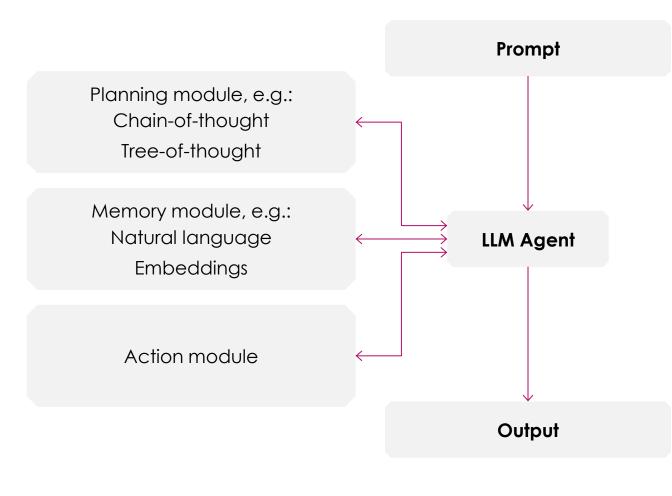
Incorporate proprietary knowledge on market dynamics, Reference most recent treatment guidelines

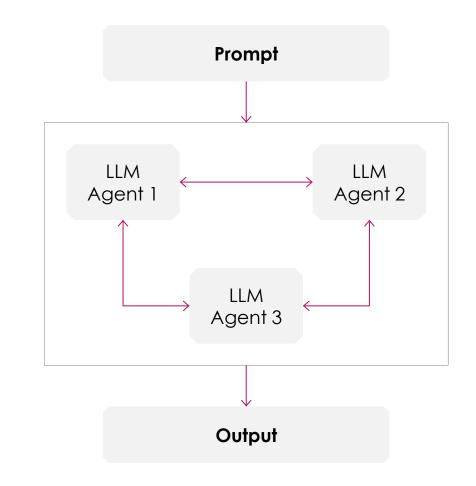
Agentic Approaches: Different levels of agency

Agency Level	Name	Description	Example Pattern
र्फ्र क्र	Simple Processor	LLM output has no impact on program flow	process_llm_output(llm_response)
***	Router	LLM output determines an if/else switch	if llm_decision(): • path_a() else: path_b()
***	Tool Caller	LLM output determines function execution	run_function(llm_chosen_tool, llm_chosen_args)
$\star \star \star$	Multi-step Agent	LLM output controls iteration and program continuation	while IIm_should_continue(): execute_next_step()
***	Multi-Agent	One agentic workflow can start another agentic workflow	if IIm_trigger(): execute_agent()

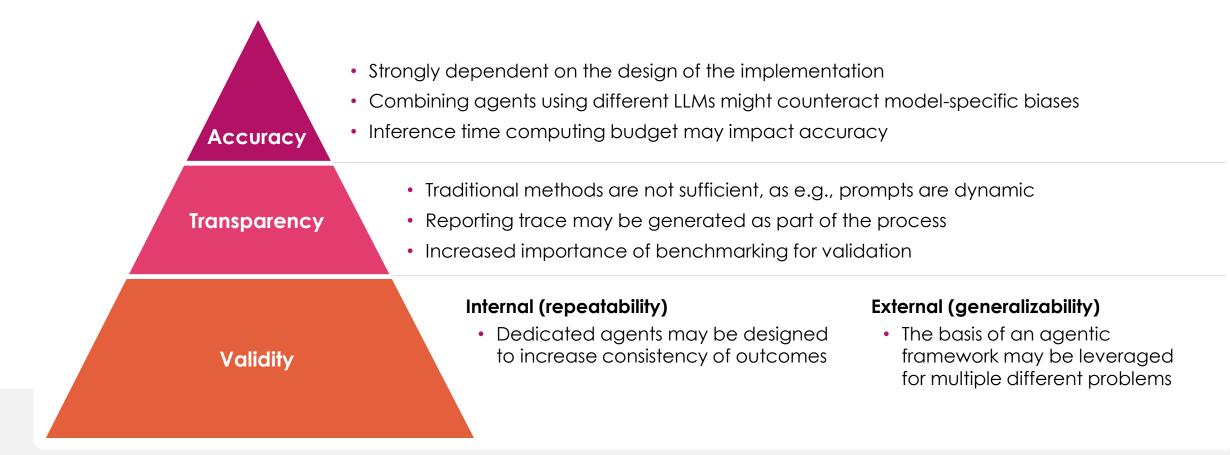
Controller Agent (Tool Caller or Multi-step Agent)

Multi-Agent





Agentic Approaches: Implications for HTA, HEOR and Access



Application examples:

Iterative writing of dossiers, Simulating review committee discussions

Thank

you