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Evidence 
Synthesis

Background

Why automate data extraction in systematic reviews?

• Systematic literature reviews (SLRs) are crucial for evidence 

synthesis

• Manual data extraction is resource-intensive, requiring high 

accuracy and consistency1,2

• For text-based tasks, large language models (LLMs) such as the 

Claude 3.7 Sonnet LLM, offer potential to3-12:

• Increase efficiency

• Reduce human error

• Enhance scalability

Rigorous performance evaluation is essential to ensure 

reliability and uphold methodological standards in SLRs

Study 

Selection

Literature 

Searches

Data 

Extraction
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Objective

To evaluate the performance of Claude 3.7 Sonnet for automating data 

extraction in systematic literature reviews
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Methods – Model Overview and Setup

Model Overview

• Custom artificial intelligence (AI) extraction system built on Claude 3.7 Sonnet, which offers:

• A large reading capacity (200,000 tokens), allowing it to process full articles at once

• The ability to read PDFs directly, including visual content such as figures and charts, without needing conversion

• Strong performance on language tasks (top-ranked in LiveBench 2024)

System Setup

• The system includes:

• LangChain, a framework to help manage and organize AI prompts dynamically

• Chunkr.ai, a platform to convert PDFs into clean, structured text

• Zod schemas, validation and typing tools to keep extracted data organized and consistent

• All extracted information is mapped to a predefined database-ready format to support further analysis

• The prompting strategy used structured, step-by-step instructions to guide consistent extraction of specific data types 

from publications.
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Methods – Master Variable List and Datasets

Master Variable List

(all 9 SLRs – 767 
publications)

• Created by two senior 
researchers

• Includes variables and 
definitions to provide 
contextual understanding
• Study characteristics

• Participant characteristics

• Intervention characteristics

• Outcomes

Training Dataset

(4 SLRs – 7 
publications)

• Prompt refinements 
were made based on 
discrepancies between 
model outputs and 
human extractions

• Over 10 iterative rounds 
of refinements

Validation Dataset

(4 SLRs – 20 
publications)

• Model extraction was 
compared with human 
data extraction by a 
senior researcher

• Performance metrics 
were calculated
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Previously completed SLRs (treatment efficacy and safety in oncology)

(9 SLRs)
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Methods – Data Extraction Model Workflow Summary

Input:
Full-text PDF articles 

included in SLR

Preprocessing by 

Claude 3.7 Sonnet LLM

• Processing PDFs

• Organizing PDF content 

into meaningful sections

Guided Data Extraction

• Structured instructions 

(prompts) tell the model 

what information to find 

and how to format it

Two-Stage Extraction 

Process

1. Identify relevant sections 

in PDF to extract data 

from

2. Extract specific data

Output:
Extracted data organized in 

table format
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Results – Extraction Performance by Data Domain

• A total of 117,889 data points were extracted across four data domains 

Study Characteristics Intervention Characteristics Participant Characteristics Outcomes

False negative (n) 9 131 192 3,558

False positive (n) 16 59 406 1,522

True positive (n) 675 2,296 14,874 94,151
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• False negatives = Relevant data missed by the model

• False positives = Incorrect or misclassified data extracted by the model

• True positives = Correct data extracted by the model, matching human extraction
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Results – Model Performance Metrics

Overall Performance

• Precision (Positive 

Predictive Value): 98.2%

= Proportion of data points 

extracted by the model that were 

correct

• Recall (Sensitivity): 96.6%

= Proportion of all relevant data 

points that the model 

successfully extracted

• F1-score: 97.4%

= Harmonic mean (balance) of 

precision and recall
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Extraction Errors (False Positives)

• Most common cause: 
The model extracted information that was not 

explicitly reported in the publication (e.g., 

assumption or hallucination)

Omission Errors (False Negatives)

• Most common cause:
The model missed implicitly stated or indirectly 

reported information and data with inconsistent 

terminology 

Extraction Error examples

• Incorrect assumption of open-label studies

• Mismatch between actual vs. planned treatment

• Model extracted treatment-arm level data when only 

population-level data was reported

• Mislabeling or over-standardization of outcome 

names

Results – Error Analysis
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Omission Error examples

• Safety assessment method often implied in 

publication (e.g., number of participants in safety 

analysis reported)

• Background therapy and line of treatment missed 

due to varying terminology across studies

These errors highlight areas for further improvement, 

particularly concerning handling implicit or inconsistent data.
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Results – Efficiency Comparison 

• Hybrid AI-driven approach with human oversight saves almost 3 hours per study compared to 

traditional dual extraction

• For example, for an average-sized SLR with 50 studies included for data extraction, this 

translates to ~145 hours of time saved (or roughly 3.5 weeks of 1 FTE)
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Discussion and Conclusions

• First known study to comprehensively evaluate AI-based data extraction in SLRs at this 

scale (117,889 data points across 106 variables)

• High performance across domains

• Slightly lower recall in Outcomes and Intervention Characteristics data, indicating room for refinement

• Hybrid AI-driven approach improves efficiency and data quality

• Saves almost 3 hours of work time per study from 1 FTE

• Helps reduce errors from reviewer fatigue, variability between reviewers, or missed information

• In conclusion, the Claude 3.7 Sonnet-based AI model demonstrated robust precision and 

recall in oncology SLRs, enabling faster data extraction while maintaining data quality

• Through ongoing efforts to refine terminology, reduce errors, and improve generalizability across 

therapeutic areas, we aim to further strengthen the model’s overall performance
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