

A Cost-Effectiveness Analysis of Diagnostic Testing in Alzheimer's Disease

Sarah Gutman PharmD Candidate¹, Alin Kalayjian PharmD, MS, MBA^{1,2}, Aarth Sheth MBA, PharmD ^{1,2}, Moayad Al-Muqbel MBA, PharmD^{1,2}, Laura Clark PhD¹

1 - Center for Health Outcomes, Policy & Economics, Rutgers Ernest Mario School of Pharmacy and Rutgers School of Public Health, Rutgers University, Piscataway, NJ; 2 - Rutgers Institute for Pharmaceutical Fellowships (RPIF)

BACKGROUND

- Alzheimer's disease (AD) is a form of dementia that progressively affects cognition, behavior, and functional status caused by accumulation of amyloid or tau protein in neuronal space.
- Early detection and diagnosis of AD enables earlier access to treatment leading to better clinical outcomes.
- Three commonly used amyloid-based AD diagnostic tests are amyloid blood test (ABT), cerebral spinal fluid tap (CSFt), and amyloid positron tomography (aPET).

OBJECTIVE

- This study aimed to identify the most cost-effective AD diagnostic strategy ABT, CSFt, and aPET from the US payer perspective set at a willingness-to-pay (WTP) threshold of \$150,000.
- To identify the most sensitive inputs to the model.

METHODS

- Study Platform: TreeAge Pro Student Version R.20
- Study Design: Markov Model
- Analyses Conducted: Cost-effectiveness analysis (CEA) and sensitivity analysis (SA)
- Assumptions:
- 70 years old patients with an AD diagnosis
- Patient's movement is static, progressive or death (terminal state) (refer to Figure 1)
- The cycle length was one year with a time horizon of 25 years
- Inputs: 25 inputs were included into the Markov Model including: rates of state transition, cost of each state, annual cost of the diagnostic, and specificity of diagnostic (refer to Table 1)
 - For specificity, the model leveraged true positive rates for each diagnostic
- A cost-effectiveness analysis (CEA) was conducted to assess the incremental cost-effectiveness ratio (ICER) and net monetary benefits (NMB) of the diagnostic strategies set at a WTP threshold of \$150,000
- A sensitivity analysis (SA) was conducted with a standard ±10% variation to all model inputs (refer to Table 1)

Table 1: Inputs and ± 10% SA Adjustment

Variable	Quantified	Low Value	High Value	
Progress MCI no AD to MildAD	0.111	0.0999	0.1221	
Progress MCI no AD to Moderate AD	0.014	0.0126	0.0154	
Progress MCI no AD to Severe AD	0.0001	0.00009	0.00111	
Progress Mild AD to Moderate AD	0.034	0.0306	0.0374	
Progress Mild AD to Severe AD	0.0002	0.00018	0.00022	
Progress Moderate AD to Severe AD	0.0098	0.00882	0.01078	
Stay MCI no AD	0.811	0.7299	0.8921	
Stay Mild AD	0.829	0.7461	0.9119	
Stay Moderate AD	0.921	0.8289	1.0131	
Stay Severe AD	0.995	0.8955	1.0945	
Death from MCI no AD	0.031	0.0279	0.0341	
Death from Mild AD	0.0095	0.00855	0.01045	
Death from Moderate AD	0.021	0.0189	0.0231	
Death from Severe AD	0.035	0.0315	0.0385	
Yearly cost Amyloid blood testing	\$575	517.842	632.918	
Yearly cost Cerebral Spinal Fluid Tap	\$900	810	990	
Yearly cost Amyloid PET scan	\$3,000	2,700	3,330	
Specificity Amyloid blood testing	0.83	0.747	0.913	
Specificity Cerebral Spinal Fluid Tap	0.86	0.774	0.946	
Specificity Amyloid PET scan	0.9	0.81	0.99	
Cost of stage: MCI no AD	\$17,372	15,624.8	19,109.2	
Cost of stage: Mild AD	\$34,742	31,267.8	38,216.2	
Cost of stage: Moderate AD	\$41,134	37,020.6	45,247.4	
Cost of stage: Severe AD	\$52,834	47,550.6	58.117.4	
Total Cycles	25	22.5	27.5	

METHODS cont.

- Decision Node: created three arms in the model: ABT, CSFt, and aPET
 - Outcome of each decision node immediately followed by a chance node assuming true positive rates of all diagnostic tests
- Markov Nodes: led to the state transitions described in Figure 1, ultimately resulting in terminal nodes
- Costs and Utilities: each state following the Markov node followed basic formula (refer to Table 2)
- **Probabilities:** rates of state transition in each phase of AD, rate of stay was determined to be the complement

RESULTS

Table 3: NMB Report											
Cost-Effectiveness Rankings Report											
Category	Strategy	Cost	Incremental Cost	Effectiveness	Incremental Effectiveness	ICER (IC/IE)	NMB	C/E			
All (no dominance)											
Undominated	Amyloid Blood Testing	\$616,218.08		16.10			\$1,799,293.13	38,266.31			
Undominated	Cerebral Spinal Fluid (CSF) Tap	\$622,516.26	\$6,298.18	16.69	0.58	10,820.67	\$1,880,302.58	37,308.91			
Undominated	Amyloid Positron Emission Tomography (PET) Scan	\$663,259.82	\$40,743.56	17.46	0.78	52,500.00	\$1,955,969.20	37,984.07			
	All referencing common baseline										
Undominated	Amyloid Blood Testing	\$616,218.08		16.10			\$1,799,293.13	38,266.31			
Undominated	Cerebral Spinal Fluid (CSF) Tap	\$622,516.26	\$6,298.18	16.69	0.58	10,820.67	\$1,880,302.58	37,308.91			
Undominated	Amyloid Positron Emission Tomography (PET) Scan	\$663,259.82	\$47,041.74	17.46	1.36	34,637.43	\$1,955,969.20	37,984.07			
All by increasing effectiveness											
Undominated	Amyloid Blood Testing	\$616,218.08		16.10			\$1,799,293.13	38,266.31			
Undominated	Cerebral Spinal Fluid (CSF) Tap	\$622,516.26		16.69			\$1,880,302.58	37,308.91			
Undominated	Amyloid Positron Emission Tomography (PET) Scan	\$663.259.82		17.46			\$1,955,969.20	37,984.07			

- CEA Results: aPET is the most cost-effective diagnostic test at a WTP threshold of \$150,000.
 - The ICER for aPET (\$52,500) was higher than for CSF (\$14,821) but remained on the WTP threshold of \$150,000.
 - Net monetary benefit (NMB) was highest for aPET (\$1,955,969), followed by CSF (\$1,880,303) and ABT (\$1,799,293),
 making aPET the most cost-effective strategy.
- SA Results: Total cycles is the most sensitive input, followed by specificity across each diagnostic. See below for remaining top five sensitivity inputs for each diagnostic state
 - ABT: cost of mild state > probability of death in MCI state > cost of moderate state
 - CSFt: cost of mild state > probability of death in MCI state > cost of moderate state
 - aPET: probability of death in MCI state > cost of mild state > cost of moderate state

CONCLUSION

- Despite the higher cost, aPET provided the greatest effectiveness, making it the preferred diagnostic tool for Alzheimer's disease at a \$150,000 WTP threshold.
- Payers should be prepared to continue to support amyloid blood testing as it is a central element to the standard of care.
- More research is needed to determine if earlier (pre-65 years old) screening would be further cost-effective due to improved outcomes associated with early diagnosis, and early access to treatment.

REFERENCES

Green, C., Handels, R., Gustavsson, A., Wimo, A., Winblad, B., Sköldunger, A., & Jönsson, L. (2019). Assessing cost-effectiveness of early intervention in Alzheimer's disease: An open-source modeling framework. Alzheimer's & dementia: the journal of the Alzheimer's Association, 15(10), 1309–1321. https://doi.org/10.1016/j.jalz.2019.05.004

Tahami Monfared, A. A., Fu, S., Hummel, N., Qi, L., Chandak, A., Zhang, R., & Zhang, Q. (2023). Estimating Transition Probabilities Across the Alzheimer's Disease Continuum Using a Nationally Representative Real-World Database in the United States. *Neurology and therapy*, 12(4), 1235–1255. https://doi.org/10.1007/s40120-023-00498-1

Committee, U. S. J. E. (2022, July 6). The economic costs of alzheimer's disease. The Economic Costs of Alzheimer's Disease - The Economic Costs of Alzheimer's Disease - United States Joint Economic Committee. https://www.jec.senate.gov/public/index.cfm/democrats/2022/7/the-economic-costs-of-alzheimer-s-disease#:~:text=Over%206%20million%20Americans%20are,%24271%20billion%20in%20unpaid%20caregivin

Alzheimer's Association. (2024). Alzheimer's Disease Facts and Figures. In Alzheimer's Dement (Vols. 20–5). https://www.alz.org/media/documents/alzheimers-facts-and-figures.pdf

